
Noname manuscript No.
(will be inserted by the editor)

Multi-Objective Vehicle Routing with Automated
Negotiation

Dave de Jonge · Filippo Bistaffa · Jordi
Levy

Received: date / Accepted: date

Abstract This paper investigates a problem that lies at the intersection of three
research areas, namely automated negotiation, vehicle routing, and multi-objective
optimization. Specifically, it investigates the scenario that multiple competing lo-
gistics companies aim to cooperate by delivering truck loads for one another, in
order to improve efficiency and reduce the distance they drive. In order to do so,
these companies need to find ways to exchange their truck loads such that each of
them individually benefits. We present a new heuristic algorithm that, given one
set of orders for each company, tries to find the set of all truck load exchanges that
are Pareto-optimal and individually rational. Unlike existing approaches, it does
this without relying on any kind of trusted central server, so the companies do not
need to disclose their private cost models to anyone. The idea is that the compa-
nies can then use automated negotiation techniques to negotiate which of these
truck load exchanges will truly be carried out. Furthermore, this paper presents a
new, multi-objective, variant of And/Or search that forms part of our approach,
and it presents experiments based on real-world data, as well as on the commonly
used Li & Lim data set. These experiments show that our algorithm is able to find
hundreds of solutions within a matter of minutes. Finally, this paper presents an
experiment with several state-of-the-art negotiation algorithms to show that the
combination of our search algorithm with automated negotiation is viable.

Keywords Vehicle Routing Problem · Automated Negotiation · Multi-objective
Optimization · Logistics · Horizontal Collaboration

Dave de Jonge (Corresponding author)
IIIA-CSIC
Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
E-mail: davedejonge@iiia.csic.es

Filippo Bistaffa
IIIA-CSIC
Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
E-mail: filippo.bistaffa@iiia.csic.es

Jordi Levy
IIIA-CSIC
Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
E-mail: levy@iiia.csic.es

2 Dave de Jonge et al.

1 Introduction

Logistics companies have very small profit margins and are therefore always look-
ing for ways to improve their efficiency. It is not uncommon for such companies
to have their trucks only half full when they are on their way to make their de-
liveries. Moreover, after completing those deliveries they often head back home
completely empty. This is a clear waste of resources, not only economically, but
also environmentally, as it causes unnecessary emissions of CO2 [15].

For this reason, many logistics providers are looking for collaborative solutions
that allow them to share trucks with other logistics companies. This is often re-
ferred to as horizontal collaboration (i.e. collaboration between companies that
operate at the same level of the supply chain). In logistics, one typically distin-
guishes between two types of horizontal collaboration, namely co-loading (multiple
companies loading their orders onto a shared vehicle) and backhauling (after mak-
ing its deliveries, a truck picks up another load for a different company and delivers
it on its way back home).

Finding the optimal co-loading and backhauling opportunities that minimize
the costs of the companies is a difficult problem, because the number of possible
solutions is exponential, and for each of these solutions calculating its cost savings
amounts to solving a Vehicle Routing Problem (VRP). This collaborative variant
of the VRP has been studied before, but mainly as a single-objective optimization
problem. That is, one tries to find the solution that minimizes the total cost of all
companies combined, under the assumption that the benefits will be fairly divided
among them, according to some pre-defined scheme.

Unfortunately, however, such a single-objective approach is problematic in a
real-world scenario, because it requires the companies to share highly sensitive
data with each other about their respective cost functions (e.g. how much they
pay their drivers, and how much they pay for fuel). The logistics companies that we
have been working with have indicated that sharing such information is absolutely
out of the question for them. In fact, they are not even willing to share such
information with a trusted central server.

Therefore, in this paper, we are instead looking at collaborative vehicle routing
from the point of view of automated negotiation. That is, we have developed an
agent that only represents one of the companies involved, and only knows the exact
cost function of that company, while it can only has an estimation of the other
companies’ cost functions because they are kept secret. Our agent first tries to
find the set of all solutions that are Pareto-optimal and individually rational (i.e.
beneficial to each individual company), and then proposes these solutions to the
other companies, according to a negotiation strategy that only aims to maximize
the profits of the agent’s own company. These other companies (which are also each
represented by their own negotiating agent) can then decide for themselves whether
or not they accept the proposed solutions, and can make counter-proposals.

The work presented in this paper mainly focuses on the first task of this agent:
to find the set of Pareto-optimal and individually rational solutions, which is a
multi-objective optimization problem.

Of course, even if the other companies’ cost functions are not exactly known,
one could still consider a single-objective approach, using a standard VRP-solver
to find the solution that minimizes the total estimated costs of all companies
combined. The problem with this approach, however, is that it only yields one

Multi-Objective Vehicle Routing with Automated Negotiation 3

single solution, and this solution may not be acceptable to the other companies,
either because the estimations were not accurate enough, or because the returned
solution is not individually rational, or because some of the other companies simply
demand higher benefits, for strategic reasons. In contrast, our approach has the
advantage that it can find a large set of potential proposals, which allows our agent
to propose many alternatives in a negotiation process.

This research was carried out in cooperation with two major logistics providers
in the UK, namely Nestlé and Pladis. Although both these companies’ primary
activity is the production of fast-moving consumer goods (i.e. food, beverages
and toiletries), they each have a large logistics department with large truck fleets
that deliver several hundreds of loads throughout the UK every day. Their main
operations consist in carrying products from their factories to their distributions
centers (DC), and from their DCs to their customers, typically large supermarket
chains.

It should be stressed that the goal of this work is to create a system that can
truly be used in real life by our industrial partners. Therefore, we need to take into
account as many constraints as possible that may appear in real life. For example,
each delivery has to be picked up and delivered at specified locations and within
a specified time-window, and each vehicle has volume- and weight- constraints. In
other words, the problem we are dealing is known in the literature as a capacitated
pickup and delivery problem with time windows (CPDPTW). Although in the rest
of this paper we will just use the more general term VRP to refer to this problem.

Also, it should be remarked that, although we assume the companies involved
do not disclose their cost models to each other, they do still have to disclose
the locations of their customers. Otherwise, co-loading and backhauling would
obviously not be possible. Fortunately, our partners have indicated that this is not
a problem for them (their customers are mainly supermarkets, so their locations
are not really secret anyway).

An earlier version of our algorithm was presented in [26], but several improve-
ments have been made since, which are discussed later on.

In summary, this paper makes the following contributions:

– A new heuristic search algorithm that allows a logistics company to find a large
set of potential exchanges of orders between itself and some other company.
These exchanges of orders should yield financial benefit for the company itself
as well as for the other company.

– A new multi-objective variant of And/Or search, which is used to combine the
solutions found by our heuristic search into larger solutions.

– Experiments that show that our approach is able to find hundreds of solu-
tions in a matter of minutes (on real-world data, as well as on an artificial
benchmark).

– Experiments that show that existing negotiation algorithms can be employed
by the companies to negotiate about which of the found solutions should be
executed.

4 Dave de Jonge et al.

2 Related Work

In this section we discuss existing work on the Vehicle Routing Problem, and
how it has been combined with negotiation and other forms of multi-objective
optimization.

2.1 Vehicle Routing Problems

The Vehicle Routing Problem (VRP) is a generalization of the well-known Travel-
ing Salesman Problem, in which the goal is to find optimal routes for multiple ve-
hicles visiting a set of locations. The VRP was introduced by Dantzig and Ramser
in 1959 [9], and is one of the most extensively studied combinatorial optimization
problems in the literature. They described a real-world application concerning the
delivery of gasoline to service stations and proposed the first mathematical pro-
gramming formulation and algorithmic approach. Since it is a generalization of
the Traveling Salesman Problem, it is well-known that the VRP is NP-hard. In
1964, Clarke and Wright proposed an effective greedy heuristic that improved on
the Dantzig–Ramser approach [7]. Following these two seminal papers, hundreds
of models and algorithms were proposed to find optimal or approximate solutions
to various versions of the VRP. A classification scheme was given in [10]. The VRP
has been covered extensively in by Toth & Vigo [40] and a more recent survey of
the state-of-the-art can be found in [6].

Many different versions and extensions of the VRP have been defined in the
literature, such as the capacitated VRP [41] in which the vehicles are constrained
by volume and/or maximum load weight, the VRP with pickups and deliveries
[39], in which the loads have a specific pickup and delivery location, so if a vehicle
passes a certain location to pick up a load it should also pass the delivery location
of that load, and the VRP with time windows [12], in which the vehicles have to
arrive at each location within a given time window. A recent survey of techniques
applied to the VRP with time windows can be found in [11].

2.2 Collaborative Vehicle Routing Problems

The collaborative VRP is a variant that involves multiple logistics operators. A
recent survey of this topic was presented in [18]. This survey distinguishes between
three methodologies: centralized collaborative planning, auction-based decentral-
ized planning, and decentralized planning without auctions. For our purposes we
are mainly concerned with the last type. They identify 14 papers of this type, but
only four of them deal with VRPs that include time windows, and pickup-and-
delivery. In [42], [43], and [44] the goal is to find a globally optimal solution that
maximizes the total profit, and in [8] the central system calculates a price that
fairly divides the benefits of collaboration among the two collaborating companies.

Although these approaches are labeled as ‘decentralized’, this really only means
‘not fully centralized’ because, although the final decisions are made by the indi-
vidual logistics companies, in each of these cases there was still a central system
that performed the search for potential solutions, based on the companies’ cost
models. This means that the collaborative VRP is still mostly treated as a classical

Multi-Objective Vehicle Routing with Automated Negotiation 5

single-objective optimization problem. Therefore, none of the solutions suggested
in these papers is feasible in our context, as our industrial partners have indicated
that any form of sharing of information about their respective cost models is out
of the question, even if it is only shared with a trusted central system.

2.3 Multi-Objective Vehicle Routing Problems

Since we are assuming each company has its own individual cost function, our work
is also related to the Multi-Objective VRP. A large survey of VRPs with multiple
objective functions has been conducted in [27], but all papers discussed in this
survey assume there is just one logistics company which has multiple objective
functions that are perfectly known by the algorithm. For example, a company
may wish to minimize the distance traveled, as well as the number of vehicles
used in the solution [33] so they try to find all Pareto-optimal solutions w.r.t.
those objectives. None of the papers discussed in this survey covers the case that
there are multiple companies, which are not willing to disclose their respective cost
models.

2.4 Vehicle Routing Problems with Negotiation

While many papers have been published that either involve multiple companies
with a single shared objective function (the collaborative VRP) or a single com-
pany with multiple objective functions (the multi-objective VRP), much less has
been published about VRPs with multiple companies where each company has its
own individual objective function. We are aware of only a few papers that do treat
somewhat similar problems.

In [36] a case study was presented that explores one-to-many negotiations
between one 4PL provider and several 3PL providers (a 3PL provider is a logistics
company with its own truck fleet, while a 4PL provider does not have a fleet, but
receives large transport orders from shippers and then redistributes them among
3PL providers). A very similar scenario was treated in [37], except that they used
auction mechanisms instead of negotiations. The two papers that are probably
most closely related to our work, are [20] and [21]. In [20] the initial idea for a
negotiation algorithm based on Branch & Bound was first put forward, which
could be applied to negotiations among competing package delivery companies
that could exchange their packages. A more detailed description of this algorithm
was later presented in [21]. These papers, however, did not take into account time
windows, or volume- and weight- constraints, and they only used artificial test
cases, rather than real-world data.

3 Automated Negotiation

The research field of automated negotiation deals with multi-agent systems in
which each agent is purely self-interested, but in which the agents still need to co-
operate to ensure beneficial outcomes. Each agent can propose potential solutions

6 Dave de Jonge et al.

to the other agents, and each agent, upon receipt of such a proposal, may decide
whether to accept it or to reject it [13].

Each agent associates a certain utility value with each potential solution, but
that utility is only obtained if that solution is accepted by all agents involved in
it. If the agents cannot come to any agreement before a given deadline, then none
of the potential collaborative solutions can be executed. This situation is often
referred to as the conflict outcome. The utility value an agent obtains in that case,
is called its reservation value. A rational agent would only ever accept a proposal
if the utility it obtains from it is greater than or equal to that agent’s reservation
value. After all, the agent is already guaranteed to obtain its reservation value
anyway without making any agreements. For this reason, in automated negotiation
we are main interested in those solutions for which each agent receives a utility
value that is greater than or equal to its reservation value. Such solutions are called
individually rational.

One typically assumes the agents have to make their proposals according to
some negotiation protocol, which defines when each agent is allowed to make or
accept a proposal, and when such proposals become binding agreements. The most
commonly used protocol is the alternating offers protocol [38], in which the agents
take turns making proposals.

Although each agent is purely self-interested, the proposals it makes must also
benefit the other agents, because otherwise they would never accept it. Therefore,
a negotiating agent must strike a balance between maximizing its own utility, and
providing enough utility to its opponents to make them accept the proposal. To do
this, agents typically start by making very selfish proposals, but, as time passes,
they slowly concede and make proposals that are less and less selfish. For the
rest of this paper, it is important to understand that such a strategy requires the
agent to have a large set of potential proposals available, with varying degree of
selfishness.

Formally, a problem instance in the field of automated negotiations (a negoti-
ation domain) is defined as follows.

Definition 1 A negotiation domain consists of:

– A finite set of agents a1, a2, . . . am.
– A set Ω of potential proposals, called the agreement space.
– A set of utility functions U1, U2, . . . Um, one for each agent. Each utility

function maps the agreement space to the set of real numbers Ui : Ω → R.
– A set of reservation values rv1, rv2, . . . rvm ∈ R, one for each agent.

A typical example of a negotiation domain is the negotiation of a car sale
between a customer and a salesperson. In that case, there are two agents (the
customer and the salesperson), and the agreement space consists of all possible
combinations (c, p) where c is a car and p is the price to pay for the car. The
salesperson would start by making an offer with a high price, while the customer
would start by making an offer with a low price. They alternate making offers,
until they meet somewhere in the middle and one of them makes an offer that is
acceptable to the other.

Multi-Objective Vehicle Routing with Automated Negotiation 7

3.1 Applying Automated Negotiations to Co-loading and Backhauling

The aim of this work is to develop a negotiating agent that can be applied by a
logistics company to negotiate co-loading opportunities with other logistics com-
panies. However, this paper mainly focuses on one component of such an agent,
namely the search algorithm to find the set of potential proposals. This set of
potential proposals can then be fed as the input to some negotiation strategy.

The question how to implement such a negotiation strategy is beyond the
scope of our work because many such algorithms have already been proposed,
for example for the Automated Negotiating Agents Competition (ANAC), which
has been organized annually since 2010. Throughout the years this competition
has focused on many different aspects of automated negotiation. From simple
bilateral negotiations with linear utility functions [3], to very large domains with
non-linear utility functions [16], multilateral negotiations [17], negotiations with
only partially known utility functions [2], negotiations between agents and humans
[32], negotiations in the game of Diplomacy [25] or the game of Werewolves [2],
to negotiations in a supply chain environment [2]. As we shall see in Section 7.5,
some of the algorithms that were implemented for ANAC can indeed be applied
to our scenario as well.

One important detail that should be pointed out, is that we are assuming the
companies only negotiate about which company will deliver which orders, and not
about any form of financial compensation for the delivery of another company’s
orders. There are several reasons for this. Scientifically, price negotiations would
make our scenario less interesting because the problem of finding a set of potential
proposals would just be a single-objective optimization problem again, in which
the goal is to find those solutions that minimize the sum of the costs of the com-
panies. The companies would then only need to negotiate how to divide the joint
financial gains. Such one-dimensional negotiations are not very interesting com-
pared to the state-of-the-art in automated negotiations. A more practical reason,
is that our partners have indicated that automated price negotiations would not
be acceptable to them in a real-life working system, because automated day-to-day
price negotiations could lead to a highly opaque pricing mechanism with strongly
fluctuating prices. This would be a serious problem for their bookkeeping. Instead,
our partners require prices to be fixed over a longer term, such as a whole year.

So, any form of financial compensation should be fixed in advance, and cannot
be subject to automated negotiation. In this paper we simply assume the financial
compensation is zero, meaning that any company would only accept to make a
delivery for another company if that other company returns the favor by making
a delivery for the first one in return.1

The negotiation domain discussed in this paper is different from the more com-
monly studied domains in the automated negotiations literature, in the following
two aspects:

1. Although the agents do not have exact knowledge about their opponents’ utility
functions, they can make reasonable estimations.

2. Utility functions are expressed as a computationally complex problem (a VRP),
so even with perfect knowledge an agent would still not be able to calculate
utility values exactly. Instead, it has to resort to heuristic estimations.

1 More complex deals are also possible, as long as each company involved in the deal benefits.

8 Dave de Jonge et al.

Regarding the first point, most studies in automated negotiations assume the
agents have absolutely no knowledge at all about their opponents’ utility functions
[5]. Alternatively, in some work it is assumed that agents have perfect knowledge
about each others’ utility [24]. In our domain, however, the truth lies somewhere
in between. The agents do not know each others’ exact utility functions, but they
are able to make reasonable estimations. After all, it is known that each company
aims to minimize distance and time, and the distances between the locations are
known. Furthermore, although each company may pay somewhat different prices
for its fuel, the write-off of its vehicles, or the salaries of its drivers, those prices
cannot be radically different among the companies.

One main example of a negotiation domain that has been studied extensively
and that does also involve these two aspects, is the game of Diplomacy [23], but
this is a purely artificial game, while in this paper we are studying a real-world
scenario.

Search algorithms for automated negotiations have been studied, for example
using simulated annealing [19], or genetic algorithms [22]. However, these papers
only looked at problems in which the utility of a single deal could be computed
quickly. They did not involve the complexity of the VRP. Also, as mentioned
before a Branch & Bound approach has been proposed, but to a simpler and
purely artificial scenario [21].

4 Definitions

Formally, the problem tackled in this paper is the following (the precise definitions
of these concepts are given in the rest of this section). Let C1, . . . Cm denote a
number of logistics companies. Then, given a location graph (L,R, d), a distance
cost dc ∈ R a time cost tc ∈ R, and, for each company Ci a set of orders Oi, a
vehicle fleet Vi and an initial fleet schedule fsi, find the set of order assignments
that are both individually rational and Pareto-optimal with respect to the cost model
(dc, tc).

We use N to denote the set of natural numbers and R to denote the set of real
numbers. We indicate time using natural numbers, which can be interpreted, for
example, as Unix time stamps.

Definition 2 A location graph (L,R, d) is a weighted graph with vertices L,
which we refer to as locations, edges R, which we refer to as roads, and a weight
function d : R→ R, representing the length of a road (in kilometers).

A location graph represents a set of possible locations where a logistics provider
could pick up or drop off loads (i.e. the factories and distribution centers of the
logistics companies, as well as the locations of their customers), and the roads
between those locations. It is assumed, without loss of generality, that the graph
is complete and symmetric and that d satisfies the triangle inequality.

Customers place orders with the logistics companies. An order represents a
certain number of pallets to be picked up and delivered within specified time
windows and at specified locations.

Definition 3 An order is a tuple (vol, w, lpu, t1, t2, tpu, ldo, t3, t4, tdo), where: vol ∈
N is the volume of the load, measured as a number of pallets. w ∈ R is the weight

Multi-Objective Vehicle Routing with Automated Negotiation 9

of the load, measured in kilograms. lpu ∈ L is the pick-up location. t1 ∈ N and
t2 ∈ N represent the earliest and latest time respectively that a company can pick
up the order (so they must satisfy t1 < t2), tpu ∈ N is the pick-up service time,
i.e. time it takes to load the pallets onto a vehicle, ldo ∈ L is the drop-off loca-
tion. t3 ∈ N and t4 ∈ N represent the earliest and latest time respectively that a
company can drop off the order (so they must satisfy t3 < t4), and tdo ∈ N is the
drop-off service time, i.e. time it takes to offload the pallets from a vehicle.

To be precise, the interval [t1, t2] represents the time window within which a
company can start loading the order onto the vehicle, so it must finish within the
time window [t1 + tpu, t2 + tpu]. Similarly, [t3, t4] is the time window within which
a company can start unloading the vehicle, so unloading should finish within the
time window [t3 + tdo, t4 + tdo].

Definition 4 A vehicle is a tuple (volmax, wmax, s), where: volmax ∈ N is the
volume of the vehicle, i.e. the maximum number of pallets it can carry. wmax ∈ R
is maximum load weight of the vehicle, measured in kilograms, and s ∈ R is
the average speed we can realistically assume the vehicle to drive.

4.1 Jobs and Schedules

We define the solutions of a VRP in terms of what we call jobs. A job represents a
number of orders scheduled to be picked up and/or a number of orders scheduled
to be delivered, by a single vehicle, at a single location, starting at a specific time.

Definition 5 A job J is a tuple: (l, Opu, Odo, ts, te) with: l ∈ L some location,
Opu a (possibly empty) set of orders to be picked up at l, Odo a (possibly
empty) set of orders to be dropped off at l, ts ∈ N the scheduled start
time of the job, and te ∈ N the scheduled end time, satisfying the following
constraints:

– for each o ∈ Opu its pick-up location must be the location l of this job.
– for each o ∈ Odo its drop-off location must be the location l of this job.
– ts < te.
– ts and and te must be consistent with the time windows of the orders (formal-

ized in Section 4.4 by Equations (6) and (7)).

A vehicle-schedule represents the itinerary of a single vehicle.

Definition 6 A vehicle schedule is an ordered list of jobs (J0, J1, J2, . . . , Jn)
where n ∈ N can be any natural number. Any vehicle schedule must satisfy the
following constraints (in the following, the sets of pick-up and drop-off orders of
job Ji are denoted as Opu,i and Odo,i respectively).

– The jobs are listed in chronological order:
if i < j then te,i < ts,j (i.e. job Ji must be finished before we can start job Jj).

– Each order appearing in any of the jobs of the vehicle schedule has to be picked
up and dropped off exactly once (formalized in Section 4.4 by Equation (8)).

– Each order must first be picked up before it can be dropped off:
if o ∈ Opu,i and o ∈ Odo,j then i < j.

10 Dave de Jonge et al.

– The location of J0 is equal to the location of Jn, and is known as a depot
(each company has one or more depots).

If o is an order, and vs is a vehicle schedule, we may write o ∈ vs when we mean
that o is picked-up and dropped off by vs. That is, o ∈ vs is a shorthand for
o ∈

⋃
i∈0,1...nOpu,i∪Odo,i. The set of all possible vehicle schedules is denoted VS .

Definition 7 A fleet schedule fs for a set of vehicles V and a set of orders
O is a map that assigns every vehicle in V to some vehicle schedule vs such that
every order o ∈ O appears in exactly one of these vehicle schedules.

fs : V → VS such that ∀o ∈ O ∃!v ∈ V : o ∈ fs(v)

Furthermore, for each vehicle v ∈ V the corresponding vehicle schedule vs = fs(v)
must satisfy:

– After each job of vs, the volume and weight of the orders loaded onto the vehicle
v cannot exceed the vehicle’s maximum load weight volmax and volume volmax
(formalized in Section 4.4 by Equations (9) and (10)).

– The difference between the end time te,i and the start time ts,i+1 of any pair
of consecutive jobs Ji, Ji+1 must be consistent with the distance between the
locations of the two jobs and the speed s of the vehicle. That is, if li and li+1

are the respective locations of Ji and Ji+1, and d(li, li+1) the distance between
them, then we must have:

∀i ∈ 0, 1, . . . n− 1 : s · (ts,i+1 − te,i) ≥ d(li, li+1) (1)

4.2 Cost Functions

For any vehicle schedule vs its cost c(vs) ∈ R is calculated as follows:

c(vs) := dc ·
n∑
i=1

d(ri) + tc · (te,n − ts,0) (2)

where dc ∈ R is the distance cost2 (in euros per kilometer), ri the road between
the locations of Ji−1 and Ji of vs, tc ∈ R is the time cost (in euros per hour),
te,n ∈ N is the scheduled end time of the last job Jn of vs, and ts,0 ∈ N is the
scheduled start time of the first job J0 of vs.

The distance- and time costs dc and tc are together referred to as the cost
model. In reality, each company would use a different cost model to calculate its
own costs. However, since our algorithm represents only one company, and the
cost models of the other companies are unknown, it always calculates the costs of
any other company using the same cost model (of the company it represents). On
the other hand, there is nothing that prevents our algorithm from using a different

2 Perhaps surprisingly, the distance cost does not depend on how much weight is loaded onto
the vehicle. This may seem unrealistic, but this is how many real-world logistics companies do
calculate their costs. Furthermore, to keep the discussion simple we here assume that dc does
not depend on the vehicle. The implementation or our algorithm, however, does allow dc to
be different for each vehicle.

Multi-Objective Vehicle Routing with Automated Negotiation 11

estimated cost model for every company, if there is reason to believe that that
would yield more accurate results.

If fs is a fleet schedule for some set of vehicles V , then its cost c(fs) ∈ R is
defined as the sum of the costs of all its vehicle schedules:

c(fs) :=
∑
v∈V

c(fs(v)) (3)

4.3 Assignments

Suppose there are m logistics companies C1, C2, . . . Cm. Each of these companies
has a fleet of vehicles Vi and a set of orders Oi to fulfill. We say an order is owned
by Ci if o ∈ Oi. However, any two companies Ci and Cj may agree together that
some order o owned by Ci will be picked up and delivered by the other company
Cj . In that case we say that an order is assigned to Cj .

Definition 8 An order assignment (or simply assignment) α for a set of
orders O is a map that assigns each order in O to some company Ci.

α : O → {C1, C2, . . . Cm}.

We let Oα,i denote the set of orders assigned to Ci by α.

Oα,i := {o ∈ O | α(o) = Ci}

So, if O consists of all the orders owned by any of the companies and α is an
assignment for O then we have O =

⋃m
i=1Oi =

⋃m
i=1Oα,i. The initial assign-

ment α is the assignment that simply assigns each order to the company that
owns it, i.e. α(o) = Ci iff o ∈ Oi. Therefore, we have Oα,i = Oi.

If Vi is the fleet of some company Ci and α some assignment, then FSα,i
denotes the set of all possible fleet schedules for fleet Vi and orders Oα,i. Further-
more, fs∗α,i denotes the optimal fleet schedule for company Ci under assignment
α. That is:

fs∗α,i := arg min{c(fs) | fs ∈ FSα,i} (4)

and ci(α) denotes the cost of that fleet schedule:

ci(α) := c(fs∗α,i) = min{c(fs) | fs ∈ FSα,i} (5)

In other words, if the companies have agreed to exchange orders between them
according to assignment α, then fs∗α,i is the most cost-effective way for company
Ci to pick up and deliver all the orders assigned to it, and ci(α) is the cost of that
solution. Furthermore, note that if the companies do not exchange any orders,
then each company just delivers their own orders Oi, which corresponds to the
initial assignment α, so in that case the cost of each company Ci is ci(α).

An assignment α dominates another assignment α′ iff for all i ∈ {1, . . .m}
ci(α) ≤ ci(α′), and for at least one of these companies the inequality is strict. An
assignment α is Pareto-optimal iff there is no α′ that dominates α, and we say
that α is individually rational iff it dominates α.

We are mainly interested in those assignments that are both Pareto-optimal
and individually rational. After all, if an assignment α is not Pareto-optimal,

12 Dave de Jonge et al.

it means that there is some assignment α′ that is better for everyone, so the
companies would rather accept α′ than α. Furthermore, if an assignment α is not
individually rational, it means that there is at least one company that prefers the
initial assignment α over α, so it has no reason to ever accept α.

It should be remarked here that whenever we use terms like ‘Pareto-optimal’
or ‘individually rational’, we actually mean Pareto-optimal or individually rational
with respect to the cost model (dc, tc). After all, our algorithm calculates all costs
for all companies using that cost model, even though in reality each company
would calculate its own costs using a different cost model.

In the language of the automated negotiation literature, our problem is a ne-
gotiation domain, where the agreement space consists of all possible assignments
α for the orders of all companies. The utility functions are the (negations of) the
cost functions ci(α) defined by Eq. (5), the conflict outcome, representing the case
that no agreement is made, is the initial assignment α, and the reservation values
are given by ci(α).

Finally, note that to calculate ci(α) one needs to find the optimal fleet schedule
fs∗α,i which amounts to solving a Vehicle Routing Problem.

4.4 Time- and Capacity- Constraints

In the previous subsections it was mentioned that jobs, vehicle schedules and fleet
schedules need to satisfy certain constraints. We here give a precise mathematical
formalization of these constraints. Readers who are not interested in this can safely
skip this section.

In Definition 5 it was mentioned that the start- and end-times ts and te of a
job must be consistent with the time windows of the orders. This is formalized
as follows. For any job J with orders Opu and Odo, the earliest time tes it can
possibly start is given by:

tes := min{ min
o∈Opu

t1,o , min
o∈Odo

t3,o}

where t1,o is the earliest time one can start picking up o and t3,o is the earliest
time one can start dropping off order o. Similarly, the latest possible time the job
can start is given by:

tls := min{ min
o∈Opu

t2,o , min
o∈Odo

t4,o}

where t2,o is the latest time one can start picking up order o and t4,o is the latest
time one start dropping off order o. So, the job has to start between the earliest
and latest start times:

tes ≤ ts ≤ tls (6)

Furthermore, the amount of time required to pick up and drop off all the orders
of the job (the service time) is given by:

tserv :=
∑
o∈Opu

tpu,o +
∑
o∈Odo

tdo,o

Multi-Objective Vehicle Routing with Automated Negotiation 13

so the job can only end after at least tserv has passed since the start time:

te ≥ ts + tserv (7)

In Definition 6 it was mentioned that each order appearing in any of the jobs
of the vehicle schedule has to be picked up and dropped off exactly once. This can
be formalized as:

∀o ∈ vs : |{i | o ∈ Opu,i}| = |{i | o ∈ Odo,i}| = 1 (8)

Recall here that o ∈ vs is a shorthand for o ∈
⋃
i∈0,1...nOpu,i ∪Odo,i

In Definition 7 it was mentioned that for each vehicle v and vehicle schedule vs
such that fs(v) = vs (meaning that the vehicle schedule vs is executed by vehicle
v) one must have that after each job of vs, the volume and weight of the orders
loaded onto the vehicle v cannot exceed the vehicle’s maximum load weight wmax
and volume volmax. That is:

∀k ∈ 0, 1, . . . n− 1 :
k∑
i=0

∑
o∈Opu,i

volo −
k∑
i=0

∑
o∈Odo,i

volo ≤ volmax (9)

∀k ∈ 0, 1, . . . n− 1 :
k∑
i=0

∑
o∈Opu,i

wo −
k∑
i=0

∑
o∈Odo,i

wo ≤ wmax (10)

where volo and wo represent the volume and weight of order o, and where the total
number of jobs in the vehicle schedule is n+ 1.

To better understand these equations, note that
∑
o∈Opu,i

volo represents the

total volume of all orders that are being loaded onto the truck at job Ji. Therefore,∑k
i=0

∑
o∈Opu,i

volo represents the total volume of all the orders that have been

loaded onto the truck during the first k+ 1 jobs. However, some of the orders that
have been loaded onto the truck at some job Ji, may have already been offloaded
at some other job that came after Ji, but before job Jk. Therefore, to get the total
volume of all orders that are on the truck after job Jk, we have to subtract the
volume of all those orders that have already been offloaded before Jk, so we get
the expression

∑k
i=0

∑
o∈Opu,i

volo −
∑k
i=0

∑
o∈Odo,i

volo. Clearly, this value has

to be below wmax at any stage of the vehicle schedule, so the inequality has to
hold for all values of k ∈ 0, 1 . . . n− 1.

5 Order Package Heuristics

In this section we finally present our new search algorithm.
In order to know which deals to propose, the negotiating agents have to evaluate

the possible ways to exchange orders between companies, and find the best ones.
If there are m companies and each company has X orders, then there are mmX

possible order assignments. For realistic cases this number is astronomical, because
our industrial partners each typically have more than a hundred orders to deliver,
every day. This means that our problem has two layers of complexity:

1. There are many possible assignments: mmX .

14 Dave de Jonge et al.

2. Given a single assignment α, it is hard to calculate its exact cost ci(α), because
it involves solving a VRP (by Equation (4)).

Typical (meta-)heuristic search algorithms like genetic algorithms and simulated
annealing can deal with the first layer of complexity, because they are able to find
good solutions while only evaluating a small fraction of the entire search space.
However, such algorithms typically may still require thousands of evaluations, so
if each of these evaluations requires solving a VRP, then the overall algorithm will
still be prohibitively slow. For this reason we needed to invent a new heuristic
algorithm that can deal with the complexity at both levels. We call it the Order
Package Heuristics.

The idea is that we first only look at what we call one-to-one exchanges, which
are exchanges of orders in which one company gives a number of orders to another
company, which were originally scheduled to be delivered by the same vehicle,
and that other company incorporates those orders into the schedule of one of its
own vehicles. So, ‘one-to-one’ refers to the fact that the orders are moved from
one vehicle to one other vehicle. After determining and evaluating the one-to-one
exchanges they are then combined into more general solutions. Furthermore, the
construction of one-to-one exchanges is restricted to the exchange of sets of orders
that correspond to a sequence of consecutive locations to be visited. We call such
sets of orders order packages.

Our algorithm represents company C1 and receives as input:

– A location graph (L,R, d).
– A set of orders Oi for each company Ci.
– A set of vehicles Vi for each company Ci.
– The cost model (dc, tc) of company C1.
– For each company Ci, an initial fleet schedule fsi ∈ FSα,i.

The output of the algorithm is:

– A set of assignments {α1, α2, . . . }, which, in the ideal case, would be exactly
the set of all Pareto-optimal assignments.

The initial fleet schedules fsi are the schedules the companies would execute if
there was no collaboration at all. These initial schedules can either be given to our
agent by the other companies, or our agent can determine them by itself using a
VRP-solving algorithm (although in that case they may be different from the ones
actually used by the other companies). Ideally, the initial fleet schedules would be
exactly the optimal initial fleet schedules fs∗α,i, but these may be hard to calculate
so in practice they may differ.

The rest of this section will give a detailed, step-by-step description of our
algorithm.

5.1 Step 1: Find Compatible Order-Vehicle Pairs

Given the orders Oi and the the initial fleet schedule fsi of each company, our
approach starts by determining for each order o which vehicles of other companies
could adjust their schedules to also pick up and drop off that order. If indeed it is
possible for a vehicle v with schedule vs to make two detours to do this, then we
say that o and vs are compatible, or that o and v are compatible.

Multi-Objective Vehicle Routing with Automated Negotiation 15

Definition 9 Let o be an order of one company Ci, let vs = (J0, J1, . . . Jn) be
a vehicle schedule of another company Cj , and let v be the vehicle scheduled to
execute vs (i.e. vs = fsj(v)). We say that o and vs are compatible if it is possible
to insert two jobs Jpu, Jdo anywhere into vs to obtain a new vehicle schedule

vs ′ = (J ′0, . . . J
′
k, Jpu, , J

′
k+1, . . . J

′
m, Jdo, J

′
m+1, . . . J

′
n)

that satisfies all relevant time- and capacity-constraints (Eqs. (9), (10), and (1)),
where job Jpu is the pickup of order o, job Jdo is the drop-off of order o, and
where every other job J ′i is exactly the same as Ji, except that the scheduled
start- and end times may have been adjusted. We then also say that o and v form
a compatible order-vehicle pair.

Note that the operation of converting vs into vs ′ is essentially the same as what
Li and Lim call the PD-shift operator [28].

Knowing all compatible order-vehicle pairs will allow us to prune a large part
of the search space in Step 3, because one can discard all solutions involving orders
and vehicles that are incompatible.

Proposition 1 If there are m companies and each company has X orders, then
the time complexity of Step 1 is O(m2X2).

Proof If there are m companies and each company has X := |Oi| orders and for
each company their initial fleet schedule involves Y vehicle schedules, then there
are mX ·(m−1)Y possible order-vehicle pairs. For each of these order-vehicle pairs
we need to check whether the order and the vehicle schedule are compatible or not.
This means we need to check whether the pick-up and the drop-off of the order can
be inserted into the vehicle schedule. If the vehicle schedule has n+1 different jobs
then the pick-up and the drop-off can both potentially be inserted in n different
places, but since the drop off always needs to take place after the pickup, there
are 1

2n · (n − 1) options to check. Furthermore, the value n can be estimated as
n ≈ 2X/Y (if a company has X orders and Y vehicle schedules, then each vehicle
schedule has on average X/Y orders to pick up and drop off, so it may need to visit
2X/Y locations). So, for each possible order-vehicle pair we need to check whether
it is compatible or not, which takes 1

2 · 2X/Y · ((2X/Y)− 1) checks, so the overall

time complexity is (mX · (m− 1)Y) · 12 · 2X/Y · ((2X/Y)− 1) = O(m2X3/Y).
Finally, it is fair to say that the number of vehicle schedules of a company

should grow linearly with the number of orders, since each vehicle has a limited
capacity. Therefore, within the big-O notation one can set X equal to Y , which
means that Step 1 has a time complexity of O(m2X2). ut

5.2 Step 2: Determine All Order Packages

The previous step checked for each individual order whether it can be delivered
by some given other vehicle, but in general we want to know whether a set of
orders can be exchanged from one vehicle (of one company) to another vehicle (of
another company). However, since the number of such sets is exponential we only
look at a particular type of order set, which we call an order package. An order
package is a set of orders, originally scheduled in one vehicle schedule, such that

16 Dave de Jonge et al.

if one removes them from the schedule, the vehicle can skip a set of consecutive
locations.

The idea behind this, is that if a few of the locations to be visited by a vehicle
are close to each other, then one is most likely to achieve a significant distance
reduction if all of those locations are skipped, and such closely clustered locations
are likely to be visited consecutively in the original schedule (as demonstrated in
Figure 1).

Fig. 1 Skipping a sequence of consecutive locations (right-hand image) often yields a higher
distance reduction than skipping an arbitrary set of locations (middle image).

If J is a set of jobs, then let Ord(J) denote the set of all orders that are either
picked up or dropped off in any of the jobs in J .

Definition 10 Let vs = (J0, J1, . . . Jn) be a vehicle schedule. An order package
op from vs is a set of orders such that there exist two integers k, l with 0 < k <
l < n for which

op = Ord({Jk, Jk+1, . . . Jl})

Step 2 consists in extracting all order packages from the vehicle schedules of
the initial fleet schedules fsi. For each of these order packages we then calculate
the cost savings sav(op) associated with it. That is, the difference between the
cost of the original vehicle schedule minus the cost of the new vehicle schedule vs ′

obtained by removing all pick-ups and drop-offs of the orders in op from vs.

sav(op) := c(vs)− c(vs ′) (11)

In order to calculate c(vs ′) one does not actually need to determine vs ′ itself.
Instead, one only needs to know its total time and distance (see Eq. (2)). To
calculate the distance one can simply take vs and remove the locations that are
skipped. Calculating the new time cost is more difficult, so we simplify it by simply
assuming the start time ts,0 of the first job and then end time te,n of the last job
stay the same. In reality, of course, this may be overly pessimistic, so in general
the true cost savings will be even better than the calculated ones.

Note that Definition 10 indeed implies that removing an order package from
a vehicle schedule will cause a number of consecutive locations to be skipped,
corresponding to jobs Jk to Jl, but it may also imply that a number of other
locations are skipped. For example, if some order o is picked up in Jl, but is
dropped off in Jl+2, and no other order is picked up or dropped off in Jl+2,
then Jl+2 will also be skipped. So, in practice an order package does not always
correspond to a consecutive sequence of locations. This is not a problem, because it
just means that sometimes even more locations can be skipped than the intended
sequence, which is only an advantage.

Multi-Objective Vehicle Routing with Automated Negotiation 17

Proposition 2 If there are m companies and each company has X orders, then
the time complexity of Step 2 is O(mX).

Proof Given a vehicle schedule vs, each order package from vs is uniquely defined
by the integers k and l, which can be any number between 1 and n− 1. Therefore,
for each vehicle schedule there are (n−1)·(n−2)

2 = O(n2) different order packages.
As explained above, n can be estimated as 2X/Y , so the number of order packages
obtained from vs is O(X2/Y 2). Since the order packages are obtained from each
vehicle schedule of each company one has to repeat this mY times, so there are
O(mY ·X2/Y 2) = O(mX2/Y) order packages in total. Furthermore, calculating
the cost savings means summing the distances of all n roads between the visited
locations, and again using n ≈ 2X/Y the total time complexity of Step 2 is
O(mX2/Y · 2X/Y) = O(mX3/Y 2). Arguing as before that X can be set equal to
Y , this can be simplified to O(mX). ut

5.3 Step 3: Generate One-to-One Exchanges

Step 3 takes all order packages from Step 2, and all vehicle schedules from the
initial fleet schedules fsi and combines them into one-to-one order exchanges.

Definition 11 A one-to-one order exchange or simply one-to-one exchange
ξ is a pair ξ = (op, vs) where op is an order package of one company, and vs is
a vehicle schedule of another company. A one-to-one exchange is feasible if it is
possible to find a single vehicle schedule vs ′ that delivers all orders of op as well
as all orders of vs while satisfying all relevant time- and capacity constraints (Eqs.
(9), (10), and (1)).

Definition 12 Let ξ = (op, vs) be some one-to-one exchange. Then the vehicle
schedule vs of ξ is called the receiving vehicle schedule, which we may also
denote as vsr(ξ). Furthermore, we define the receiving vehicle vr(ξ) to be the
vehicle that was scheduled to execute vs (i.e. fsi(vr(ξ)) = vs), and the receiving
company Cr(ξ) to be the company that owns the receiving truck.

Similarly, we use the notation op(ξ) to denote the order package op of ξ, and
we define the donating vehicle schedule vsd(ξ) to be the vehicle schedule that
was originally supposed to pick-up and deliver the orders in op, the donating
vehicle vd(ξ) to be the vehicle that was supposed to execute the donating vehicle
schedule (i.e. fs(vd(ξ)) = vsd(ξ)), and the donating company Cd(ξ) to be the
company that owns the donating vehicle and the orders of the order package op.

These concepts are illustrated in Figure 2.
Determining whether a one-to-one exchange (op, vs) is feasible or not amounts

to solving a VRP. For this, we use an existing VRP-solver from the OR-Tools
library by Google [35]. Specifically, we take the set consisting of all orders from
op and all orders from vs and then ask the VRP-solver to find a schedule for a
single vehicle that delivers all those orders. If this is indeed possible, the solver
will output a new vehicle schedule vs ′. We then calculate the loss loss(op, vs) for
the receiving company, which is the difference between the cost c(vs ′) of this new
schedule and the cost c(vs) of the original schedule (both calculated with Eq. (2)).

loss(op, vs) = c(vs ′)− c(vs) (12)

18 Dave de Jonge et al.

A

B
C

A

B C

Fig. 2 These two images illustrate the concept of a one-to-one order exchange. Left: the two
original vehicle schedules for Nestlé (red, the ‘receiving vehicle schedule’) and Pladis (blue,
the ‘donating vehicle schedule’) respectively, before the exchange. Right: the two new vehicle
schedules obtained by removing an order package from Pladis’ vehicle schedule, and adding
it to Nestlé’s vehicle schedule. The exchanged order package involves the three consecutive
locations A, B and C. Note that this exchange yields large savings for Pladis (the donating
company), while yielding only a small distance increase (and hence financial loss) for Nestlé
(the receiving company).

However, calling the VRP-solver is computationally expensive, so before doing this
the results from Step 1 are used to directly discard many one-to-one exchanges
without calling the solver. Specifically, a pair (op, vs) is only considered if every
order o ∈ op is compatible (Def. 9) with vs. All other pairs (op, vs) are discarded.

It should be noted, however, that this procedure may discard many one-to-one
exchanges that are actually feasible, because even if some orders of op are not
compatible with vsr it may still be possible to find some vehicle schedule that
does deliver all orders. This is because ‘compatible’ only means that the order can
be incorporated in the vehicle schedule with a few minor adjustments. It does not
take into account that an entirely re-arranged vehicle schedule could still be found
that does succeed in delivering all orders.

After obtaining the set of feasible one-to-one exchanges, one can again discard
many of them. Namely, those that do not yield any overall benefit because the loss
for the receiving company is greater than the savings of the donating company,
i.e. if loss(op, vs) > sav(op).

Proposition 3 If there are m companies and each company has X orders, then
the time complexity of Step 3 is O(m2X2).

Proof The number of one-to-one exchanges equals the number of order pack-
ages times the number of vehicle schedules. The first has been calculated to be
O(mX2/Y) and the second is mY , so the number of one-to-one exchanges is
O(m2X2). In the worst case the VRP-solver needs to be called for each of these.
Although calling the VRP-solver is expensive in practice, and solving a VRP in
general takes exponential time, the formal computational complexity of this step
is only O(1). This is because our approach only requires solving problem instances
with a single vehicle, and the size of such instances is bounded by the capacity
constraints of the vehicle. This means that the overall time complexity of Step 3
is O(m2X2). ut

Multi-Objective Vehicle Routing with Automated Negotiation 19

5.4 Step 4: Combine One-to-One Exchanges into Full Exchanges

After Step 3 one is left with a set of feasible one-to-one exchanges. Each of these
already represents an order assignment, but many more order assignments can be
found if they are combined, so that multiple order packages can be exchanged and
loaded onto multiple other vehicles. Furthermore, if there is no form of payment
between the companies, then a single one-to-one exchange would never be an
acceptable deal, because the receiving company only loses money. But, if the overall
benefit of each one-to-one exchange is positive (i.e. sav(op) > loss(op, vs)) then
one can combine multiple one-to-one exchanges into bundles that are individually
rational.

However, not every such bundle is feasible, because several one-to-one ex-
changes may contradict each other. For example, two different order packages,
op1 and op2, may contain the same order o, and may appear in two different
one-to-one exchanges (op1, vs1) and (op2, vs2) with different receiving schedules.

Definition 13 A full order exchange ϕ is a set of one-to-one exchanges, i.e.
ϕ = {(op1, vs1), (op2, vs2), . . . (opk, vsk)}, such that all order packages are mutually
disjoint: opi ∩ opj = ∅ for all i, j ∈ 1 . . . k.

Again, determining the exact set of all full order exchanges is costly, so we
simplify this by only looking for those sets ϕ that satisfy the following constraint:

– If a vehicle v is the receiving vehicle of any one-to-one exchange in ϕ, then it
cannot appear in any other element of ϕ (neither as donating vehicle, nor as
receiving vehicle).

This constraint not only reduces the size of the set of possible solutions, but also
has one other great advantage: it means that for any company its total profit from
the deal can be calculated simply as the sum of the profits (or losses) it makes
from the individual elements of ϕ. On the other hand, if one vehicle acted as a
receiver for more than one one-to-one exchange, then it is not guaranteed that the
loss for that vehicle would be equal to the sum of the losses incurred from the
two individual one-to-one exchanges. In fact, the combination of the two one-to-
one exchanges might not even be feasible, because the receiving vehicle might not
have the capacity to handle them both. Therefore, thanks to this constraint, we
can define for any company Ci and any full order exchange ϕ a utility value as
follows.

Definition 14 For any company Ci and any one-to-one exchange ξ = (op, vs) we
define its utility ui(ξ) as:

ui(ξ) :=

sav(op) if Ci is the donating company

−loss(op, vs) if Ci is the receiving company

0 otherwise

(13)

and, for any company Ci and any full order exchange ϕ we define its utility as:

ui(ϕ) :=
∑
ξ∈ϕ

ui(ξ) (14)

20 Dave de Jonge et al.

Note, in this definition, that sav and loss are both always non-negative, so a
positive loss gives negative utility. Furthermore, note that each full order exchange
ϕ corresponds to a unique assignment αϕ and a fleet schedule fsϕ,i ∈ FSαϕ,i for
each company Ci, defined by Equations (15) and (16).

αϕ(o) =

{
Cr(ξ) if o ∈ op for some ξ = (op, vs) ∈ ϕ
α(o) otherwise

(15)

where Cr(ξ) is the receiving company of ξ. That is, all orders that appear in the
order package of any one-to-one exchange ξ in ϕ should be assigned to receiving
company of that one-to-one exchange, while all other orders are assigned to their
respective owners.

fsϕ,i(v) =

vs′r if v is the receiving vehicle of some ξ ∈ ϕ
vs′d if v is the donating vehicle of some ξ ∈ ϕ
fsi(v) otherwise

(16)

where vs′r is the vehicle schedule resulting from incorporating op(ξ) into vsr(ξ)
and vs′d is the vehicle schedule resulting from removing op(ξ) from vsd(ξ).

Furthermore, note that by Equations (3), (11) and (12), ui(ϕ) is equal to
c(fsi)− c(fsϕ,i), which can be seen as an approximation for the true cost savings
ci(α)− ci(αϕ).

The problem of finding the set of full order exchanges that are Pareto-optimal
can now be modeled as a multi-objective optimization problem (MOOP), i.e. a
constraint optimization problem with multiple objective functions (one for each of
the m companies involved). That is, given the set Ξ of all one-to-one exchanges we
found in Step 3, we aim to find those subsets ϕ ⊆ Ξ that are Pareto-optimal with
respect to the objective functions ui(ϕ), under the given constraints. Formally:

maximize
ϕ∈2Ξ

(u1(ϕ), u2(ϕ), . . . , um(ϕ))

subject to: If ξi, ξj ∈ ϕ and i 6= j then op(ξi) ∩ op(ξj) = ∅.
If ξi, ξj ∈ ϕ and i 6= j then vr(ξi) 6= vr(ξj)

If ξi, ξj ∈ ϕ then vr(ξi) 6= vd(ξj)

In principle, this can be solved with any existing MOOP algorithm. However,
for our specific case we have implemented our own algorithm which is a multi-
objective variant of And/Or Search [31]. This algorithm is discussed in Section 6.

As a final step, every full exchange ϕ returned by the MOOP solver is converted
to the corresponding assignment αϕ, through Equation (15). The set of these
assignments in then returned by the algorithm.

Proposition 4 The time complexity of Step 4 is exponential in the number of one-
to-one exchanges found by Step 3 (at least, if P 6= NP), so it has a time-complexity

of O(2m
2X2

).

Proof (Sketch) Step 4 entails solving a (multi-objective) constraint optimization
problem with hard constraints. The simpler problem of finding any solution ϕ that
satisfies the hard constraints is already an NP-hard problem, because each one-
to-one exchange ξ can be seen as a binary variable, so this is essentially a boolean

Multi-Objective Vehicle Routing with Automated Negotiation 21

satisfaction problem. As we already mentioned in the proof of Proposition 3, the
number of one-to-one exchanges is O(m2X2), so any algorithm that solves this

boolean satisfaction problem has a computational complexity of O(2m
2X2

). ut

5.5 Discussion

The overall computational complexity of our algorithm is given simply by the
combination of the four steps. We have seen that Steps 1 and 3 are quadratic
(Propositions 1 and 3), Step 2 is linear (Proposition 2), and Step 4 is exponential
(Proposition 4), so the overall time-complexity of our algorithm as a whole is also
exponential.

Since it still takes exponential time, one may wonder what we have actually
achieved with our heuristics. The point is that the problem to be solved in Step 4
is much simpler than the original problem. Firstly, because the preceding steps
have greatly pruned the search space, and secondly because the new problem is an
ordinary (multi-objective) constraint optimization problem with linear objective
functions (by Equation (14)). In other words, we have removed the second layer
of complexity that we discussed at the beginning of this section. As we will see
below in Section 7.4, our algorithm indeed turns out to have a very low run time
in practice.

In summary, our approach is fast for the following reasons:

1. The VRP-solver is only used to evaluate one-to-one exchanges rather than full
exchanges, because one-to-one exchanges much smaller, and there are a lot less
of them.

2. The number of one-to-one exchanges is reduced by discarding those that involve
non-compatible order-vehicle pairs.

3. The number of one-to-one exchanges is further reduced by only considering
those that exchange order packages rather than general sets of orders.

4. The number of one-to-one exchanges is reduced even further, by discarding
those for which the loss is greater than the savings.

5. Our approach only considers full exchanges in which vehicles can act either
as donating vehicle or receiving vehicle, but not both, and in which a vehicle
can only receive at most one order package. This has the advantage that the
number of full exchanges is reduced and that the cost saving of a full solution
can be calculated with a linear formula.

On the other hand, our approach has the disadvantage that it may be pruning
the search space too strongly, because the constraints that are imposed may also
cause a number of good solutions to be discarded.

The algorithm presented here differs in three major points from the algorithm
we presented earlier in [26]. Namely:

– The current version takes into account service times (the time it takes to load
or unload a vehicle).

– The current version allows any vehicle that was not scheduled to also act as
a receiving vehicle in a one-to-one exchange (so the receiving vehicle schedule
can be the trivial schedule in which the vehicle never departs from the depot).

– In the current version, the multi-objective optimization problem solved by the
And/Or search is modeled a bit differently (see Section 6.3).

22 Dave de Jonge et al.

6 Multi-objective And/Or Search

In order to execute Step 4 of our algorithm, we need an algorithm to solve a
discrete multi-objective optimization problem. Many algorithms for such problems
exist [30], but most of them are only approximate and based on meta-heuristics.
To the best of our knowledge, very few of them can solve the problem exactly, and
are able to deal with domains in which the set of feasible solutions is very sparse.

For this reason we propose a new algorithm, which is a multi-objective varia-
tion of so-called And/Or Search [31]. And/Or Search is an exact search technique
for constraint optimization problems that exploits the fact that not all variables
depend on each other, which makes ordinary depth-first search unnecessarily inef-
ficient. We propose a new variant of this technique, adapted to MOOPs, so, rather
than just returning one solution or all solutions, it returns the set of Pareto-optimal
solutions.

6.1 Ordinary And/Or Search

This subsection gives a brief overview of the existing And/Or Search algorithm for
single-objective constraint optimization problems. For a more detailed discussion
we refer to [31]. In the next subsection we will discuss our own multi-objective
variant.

Definition 15 A (single objective) constraint optimization problem (COP)
is a tuple 〈X ,D, F 〉 where X = {x1, x2, . . . xN} is a set of variables, D =
{D1, D2, . . . DN} a set of domains, that is, for each variable xi the corresponding
domain Di is a set of possible values for that variable, and F = {f1, f2, . . . fM} is
a set of functions, called constraints. Each constraint is a map from the cartesian
product of some subset of D, e.g. D2 ×D3 ×D7, to the set R ∪ {−∞}.

Definition 16 Let 〈X ,D, F 〉 be a COP. A full solution, or simply a solution ~x
is an element of the Cartesian product of all domains, i.e. ~x ∈ D1 ×D2 × . . . DN .
Furthermore, if X ′ is a subset of X , then a partial solution ~x on X ′ is an element
of the Cartesian product of all domains corresponding to the the variables in X ′.
For example, if X ′ = {x2, x3, x7} then a partial solution on X ′ would be an element
from the set D2 ×D3 ×D7.

The goal of a COP is to find the full solution ~x that maximizes the objective
function f(~x) :=

∑M
j=1 fj(πj(~x)) (where πj is the projection operator that projects

the full solution onto the domain of fj).
And/Or search iteratively expands a search tree, consisting of two kinds of

nodes, called AND nodes and OR nodes. The root node is an AND node, the
children of any AND node are OR nodes, and the children of any OR node are
AND nodes. Every OR node is labeled with a variable xi of the COP and will
have exactly |Di| children. Each of these children will be labeled with a different
variable assignment xi 7→ di where di ∈ Di. The children of an AND node (which
are OR nodes) are each labeled with a different variable xj .

For ordinary tree search algorithms such as depth-first search (DFS), each
solution corresponds to a linear branch from the root to a leaf node. In And/Or
search, on the other hand, each solution is represented by a sub-tree rather than a

Multi-Objective Vehicle Routing with Automated Negotiation 23

branch. Specifically, a solution tree τ is a sub-tree of the fully expanded And/Or
search tree σ that satisfies the following conditions:

– The root of τ is an AND node.
– For each OR node ν in τ , τ also contains exactly one child of ν.
– For each AND node ν in τ , τ also contains all children of ν.

If the root of τ is also the root of the full tree σ, then τ will contain exactly one
AND node for each variable of the problem, so the labels of all the AND nodes in
this solution tree together form a full solution to the COP. Otherwise, the solution
tree just represents a partial solution.

The intuitive idea behind And/Or search is that each AND node ν corresponds
to a partial solution xν consisting of all labels of all AND nodes in the path from
the root to ν, and that given this partial solution, the rest of the problem can be
simplified by dividing it into several sub-problems, involving different variables,
that can be solved independently from each other.

The great advantage of And/Or search is that if not all variables depend on each
other, then it is much faster than DFS because it exploits these independencies. In
fact, in the extreme case that all variables can be optimized independently from
each other, And/Or search can solve a COP in linear time. On the other hand,
in the other extreme case that all variables depend on all other variables, then
And/Or search cannot exploit any independencies, and it becomes equivalent to
an ordinary depth-first search.

6.2 Our Multi-objective Variant of And/Or Search

This subsection describes our new variant of And/Or search, for multi-objective
optimization problems.

Definition 17 A multi-objective constraint optimization problem (with
m objectives) is a tuple 〈X ,D, (F1, F2, . . . Fm)〉, where X and D are as before, but
now the constraints are divided into m different sets Fi = {fi,1, fi,2, . . . fi,Mi

},
which define m different objective functions fi(~x) :=

∑
fi,j∈Fi

fi,j(πj(~x)).

First note that (just as in an ordinary And/Or search) one can associate with
any AND node ν a set of partial solutions Xν , corresponding to exactly all solution
trees with root ν. The idea of our multi-objective And/Or search, is that for
each AND node ν, it stores a set of solutions pfν , consisting of exactly those
partial solutions in Xν that are Pareto-optimal (within Xν). We call this set
the local Pareto-set of ν, and it is generated as soon as the subtree under ν is
fully expanded. If ν is a leaf node, then pfν is the singleton set consisting of the
unique partial solution corresponding to ν, which is exactly the label of ν (i.e.
pfν = Xν = {xi 7→ di}). Otherwise, pfν is generated by taking the union of the
local Pareto-sets of all the grandchildren of ν (recall that the children of ν are OR
nodes, so the grandchildren are AND nodes), then extending each of them with
the label of ν, and then finally removing all dominated elements of this set, so
that pfν is indeed a Pareto-set. Once the entire search tree has been expanded, the
local Pareto-set for the root is generated. This Pareto-set will then be returned as
the output of the algorithm. Note, however, that often it is not really necessary
to expand the entire search tree, because pruning techniques such as brand-and-
bound can be used.

24 Dave de Jonge et al.

6.3 Multi-Objective And/Or Search Applied to Our Case

We have applied our Multi-Objective And/Or Search to implement Step 4 of our
algorithm. To do this, we modeled our problem as a MOOP 〈X ,D, (F1, F2 . . . Fm)〉,
where m is the number of companies. X in this case is a set of binary variables,
one for each one-to-one exchange found by Step 3 of our algorithm. That is, X =
{x1, x2, . . . xN}, where N is the number of one-to-one exchanges found, i.e. N =
|Ξ |. These variables are binary, so for each xi its domain is Di = {0, 1}.

Thus, a solution ~x is an N-tuple consisting of zeroes and ones. Each solution
represents a full order exchange ϕ by: ξj ∈ ϕ iff xj = 1. The constraints are given
by Fi = {gi,1, gi,2, . . . gi,N , h1,2, . . . hN−1,N}, consisting of one soft constraint
gi,j : Dj → R for each variable xj , defined by:

gi,j(xj) = xj · ui(ξj) (17)

with ui as in Equation (13), and one hard constraint hj,k : Dj ×Dk → {−∞, 0}
for every pair of different one-to-one exchanges ξj , ξk, defined by:

hj,k(xj , xk) =

−∞ if xj = xk = 1 and(

op(ξj) ∩ op(ξk) 6= ∅, or vr(ξj) = vd(ξk), or

vd(ξj) = vr(ξk), or vr(ξj) = vr(ξk)
)

0 otherwise

(18)

Note that Equation (17) says that the utility of one-to-one exchange ξj con-
tributes to the utility of a solution for company Ci iff ξj is included in that so-
lution (i.e. xj = 1), while the hard constraints defined by Eq. (18) are simply
those mentioned earlier in Section 5.4. Also note that the hard constraints are
the same for each company, so each Fi contains exactly the same hard constraints
h1,2, . . . , hN−1,N .

This MOOP is different from the MOOP that was presented in our previous
paper [26], where each variable corresponded to a vehicle, rather than a one-to-one
order exchange. However, they represent the same problem of combining one-to-
one order exchanges into a full order exchange.

7 Experiments

We have tested our algorithm on two data sets. The first one is the Li & Lim
benchmark data set [28], which is one of the most commonly used benchmarks
for vehicle routing problems. The second data set consists of 10 new test cases
that we generated from real-world data provided to us by our industrial partners.
Furthermore, we performed an experiment in which we passed the solutions found
by our search algorithm to a number of state-of-the-art automated negotiation
algorithms to demonstrate the feasibility of automated negotiations applied to our
scenario.

Multi-Objective Vehicle Routing with Automated Negotiation 25

7.1 The Li & Lim Data Set

The Li & Lim data set [28] is a widely used benchmark for vehicle routing problems.
This data set contains 6 types of test cases, labeled LR1, LC1, LRC1, LR2, LC2,
and LRC2 respectively. The test cases of types LR1 and LR2 have locations that
are randomly distributed, while for the types LC1 and LC2 the locations are
clustered. Test cases of types LRC1 and LRC2 have a combination of random and
clustered locations. The test cases of types LR1, LC1, and LRC1 have a short
time horizon, while the test cases of types LR2, LC2, and LRC2 have a longer
time horizon.

The Li & Lim data set was designed for non-collaborative vehicle routing, so we
had to transform its instances to make them applicable to a collaborative setting.
For this, we took a similar approach as Wang & Kopfer [42]. That is, we generated
collaborative test cases for two companies, by combining pairs of instances from
the original Li & Lim data set. In such a collaborative test case, each company
owns a set of orders corresponding to one of the two original instances. To do this,
all locations of one of the two instances have to be moved by a fixed amount of
distance in one direction, to ensure the two companies do not have their depots at
the same location. For our experiments we used the instances with 100 orders for
each company (i.e. 100 pick-ups and 100 deliveries), and only those of types LC1,
LR1, and LRC1, because Wang & Kopfer observed that the test cases with longer
time horizon do not offer as much opportunity for collaboration.

We first determined which pairs of original test cases have the highest potential
for improvement by collaboration. To do this, we considered all combinations of
different test cases of the same type (e.g. there are 10 instances of type LRC1, so
we can make (10 · 9)/2 = 45 combinations). Since we used 3 types of test case, we
could potentially generate 3× 45 = 135 different collaborative test cases.

Then, for each of these 135 possible test cases we had to find out the best
way to move the locations of one of the two original instances. To do this, for
each pair of original instances, we tried to combine them in 32 different ways, by
shifting the second instance in 8 different directions (north, north-east, east, etc..),
and over 4 different distances (30, 45, 60, and 75 ’units’ of distance). Then, for
each of these 32 shifts we used the VRP solver from OR-Tools to calculate the
best collaboration-free solution and the best centralized collaborative solution, and
picked the one for which the difference was greatest.

Finally, out of the 135 possible test cases, we picked the 5 best ones of each type
(LC1, LR1, and LRC1), so in the end we used 15 instances for our experiments
(by ‘best’ we again mean the instances that had the greatest difference between
the optimal collaboration-free solution and the optimal centralized solution). They
are listed in Tables 1 and 2.

We have given the collaborative test cases names of the form ‘A + B (x,y)’
where A and B are the names of the original test cases, and x and y are the number
of units that instance B was shifted in the x-direction and y-direction respectively.
For example, the test case LC1 2 10 + LC1 2 4 (30,0), was composed from original
test cases LC1 2 10 and LC1 2 4, and the second of these was shifted 30 units in
the x-direction, and 0 units in the y-direction.

26 Dave de Jonge et al.

7.2 Real-world Test Cases

As mentioned above, we also generated 10 test cases from real-world sample data
provided to us by our industrial partners. In each of these test cases the two
companies each had 100 orders to pick up and deliver on the same day. The
total number of locations to be visited by either company varied among the test
cases between 117 and 140. The average distance between any two locations varied
between 189 km and 218 km and the diameter of each graph varied between 594 km
and 680 km. The average volume of the orders was around 26 pallets. Each vehicle
was assumed to have a maximum volume capacity of 56 pallets and a maximum
weight capacity of 25,000 kg. The average speed of a vehicle was assumed to be
54 km/hr.

The most important differences between the real-world test cases and the Li
& Lim test cases are the following:

1. In the real-world test cases a company may have multiple depots (but each
vehicle still needs to return to the same depot as were it started).

2. The vehicles in the real-world test cases have two types of constraints: volume
and weight, whereas the Li & Lim test cases only involve one type of constraint.

3. In the real-world test cases most of the orders are picked up at one of the
companies’ depots, while for the Li & Lim test cases the pick-up locations are
typically entirely different from the depots.

4. In the real-world test cases we assume each company has access to an unlimited
supply of vehicles, while the Li & Lim test cases involve finite fleets.

The assumption that the companies in the real-world cases have an unlimited
fleet is justified by the fact that in reality the companies can always rent vehicles
from third parties whenever they do not have enough vehicles themselves (which
indeed happens very often).

The 10 real-world test cases are exactly the same as the ones that were used
for our experiments in [26], but since several improvements to our algorithm have
been made since then, the results are different.

7.3 Performance Measures

We have assessed the quality of our algorithm using five different performance
measures. Let Φ denote the set of all full order-exchanges found by Step 4 of our
algorithm. Then, our quality measures are the following:

1. The total number of full order-exchanges found with positive social welfare:
|{ϕ ∈ Φ |

∑
i ui(ϕ) > 0}|.

2. The total number of full order-exchanges found that are individually rational:
|{ϕ ∈ Φ | ∀i ui(ϕ) ≥ 0}|.

3. The diversity among the solutions (γ̂1 and γ̂2, explained below).
4. The highest relative social welfare improvement among all full order exchanges

found:

max
ϕ∈Φ

∑
i ui(ϕ)∑
i c(fsi)

· 100%

Note that the numerator represents the total cost savings of all companies com-
bined, while the denominator represents the total initial costs of all companies
combined.

Multi-Objective Vehicle Routing with Automated Negotiation 27

5. The time it takes to execute the algorithm.

As explained in Section 3, a negotiation algorithm needs to have a large set of
possible solutions available to propose to its opponent. Ideally, this set of possible
proposals would be very diverse, with some proposals being very profitable to the
agent itself, some being very profitable to the opponent, and others somewhere in
between. The more diverse the set of solutions (in terms of utility), the easier it
will be for the agent to follow a smooth, gradual, concession strategy. We therefore
assess the diversity of the Pareto-frontier as follows. First, let (ϕ1, ϕ2, . . . ϕK) be a
sorted list containing all full order exchanges found by Step 4 of our algorithm, plus
the ‘empty solution’ ∅ representing the case that there is no exchange of orders.
This list is sorted in order of increasing utility for company Ci, i.e. ui(ϕ1) ≤
ui(ϕ2) ≤ . . . ui(ϕK). We then define the max-gap γi as follows:

γi := max
1≤j<K

ui(ϕj+1)− ui(ϕj)

That is, the largest ’gap’ between any two neighbors in the Pareto frontier. The
lower this value, the more evenly the solutions are distributed along the fron-
tier. We also calculate the largest possible gap between any two solutions: Γi :=
ui(ϕK)− ui(ϕ1) which we then use to calculate the relative max-gap:

γ̂i :=
γi
Γi
· 100% (19)

The lower this value, the better the quality of the Pareto-frontier. See also Figure 3
for a visualization of this quantity.

Γ2

γ1

Γ1

γ2
u2

u1

Fig. 3 The ‘diversity’ of the Pareto-frontier is measured by the quantities γ̂1 := γ1/Γ1 and
γ̂2 := γ2/Γ2. The lower these values, the more uniformly the solutions are distributed along
the Pareto-frontier.

28 Dave de Jonge et al.

Table 1 The first column shows the name of each test case. The second column shows the
number of solutions found by Order Package Search. The third column shows how many of these
solutions were individually rational. The fourth column shows the uniformity of the solutions
found. The fifth column shows the highest relative welfare improvement among the solutions
found, and, for comparison, the final column shows the relative social welfare improvement for
the unique solution found by a Single-objective Search.

Test Case #Assign. #IR (γ̂1, γ̂2) Soc. Welf. Single Obj.
LC1 2 10 + LC1 2 4 (30,0) 449 68 (12% , 8%) 9.92% 16.4%
LC1 2 2 + LC1 2 6 (42,-42) 60 33 (20% , 15%) 13.8% 14.1%
LC1 2 2 + LC1 2 7 (32,-32) 61 18 (20% , 17%) 12.1% 12.1%
LC1 2 4 + LC1 2 7 (-30,0) 354 69 (4% , 5%) 10.6% 15.7%
LC1 2 4 + LC1 2 8 (-30,0) 405 59 (7% , 8%) 10.5% 14.8%
LR1 2 10 + LR1 2 3 (0,-30) 921 146 (3% , 3%) 10.7% 16.7%
LR1 2 10 + LR1 2 8 (0,30) 1011 159 (6% , 5%) 8.78% 15.8%
LR1 2 3 + LR1 2 8 (0,30) 580 122 (4% , 7%) 11.4% 17.9%
LR1 2 5 + LR1 2 8 (0,30) 1351 210 (3% , 5%) 9.24% 15.6%
LR1 2 8 + LR1 2 9 (0,-30) 1309 264 (3% , 3%) 9.84% 15.2%
LRC1 2 1 + LRC1 2 9 (-45,0) 261 51 (11% , 5%) 9.81% 14.6%
LRC1 2 4 + LRC1 2 7 (21,21) 1132 188 (8% , 11%) 7.56% 13.6%
LRC1 2 6 + LRC1 2 7 (-21,-21) 714 172 (5% , 3%) 11.6% 13.6%
LRC1 2 7 + LRC1 2 8 (21,21) 173 35 (9% , 15%) 11.8% 15.3%
LRC1 2 7 + LRC1 2 9 (21,21) 363 71 (5% , 4%) 10.1% 13.4%
Real-World A 496 106 (3% , 5%) 2.97 % 5.99 %
Real-World B 1302 466 (2% , 1%) 6.73 % 7.16 %
Real-World C 133 33 (10% , 14%) 2.16 % 3.47 %
Real-World D 128 75 (6% , 6%) 3.80 % 5.19 %
Real-World E 977 283 (2% , 2%) 4.76 % 7.61 %
Real-World F 352 105 (5% , 7%) 3.22 % 7.16 %
Real-World G 376 74 (3% , 4%) 2.14 % 2.58 %
Real-World H 436 143 (3% , 2%) 3.93 % 7.92 %
Real-World I 1037 257 (1% , 25%) 6.52 % 10.6 %
Real-World J 341 51 (5% , 10%) 3.12 % 4.90 %

7.4 Results

The experiments were performed on a machine with a 12-core 3.70GHz CPU and
32GB RAM. Our algorithm was implemented in Java. The results are displayed
in Tables 1 and 2.

In Table 1 the first column shows the identifier of each test case. The second,
third, fourth, and fifth column show the quality measures 1-4 listed in Section 7.3
(the fifth quality measure is listed in Table 2). In order to compare our algorithm
with the single-objective approach discussed in the introduction, the last column
displays the relative social welfare improvement of the solution found by the single-
objective approach (obtained with the same VRP-solver as we used for Step 3).

One main observation from Table 1, is that the results display high variance
among the test cases. For some test cases we find many more solutions than for
others. Furthermore, we note that for the artificial benchmark instances by Li &
Lim better results are achieved than for the real-world test cases. For the Li & Lim
instances solutions are found that reduce the combined costs by between 7% and
14%, while for the real-world test cases cost reductions are found between 2% and
7%. We also notice that in most cases the single-objective search is much better
at finding a socially optimal solution, but of course such a search only returns one
solution, while our approach yields hundreds of alternatives which can be proposed

Multi-Objective Vehicle Routing with Automated Negotiation 29

Table 2 Run times (in seconds) of Steps 3 and 4 of the Order Package Search, compared with
Single-Objective Search.

Test Case Step 3 Step 4 Single Obj.
LC1 2 10 + LC1 2 4 (30,0) 60 ± 0 2 ± 0 103 ± 1
LC1 2 2 + LC1 2 6 (42,-42) 6 ± 0 1 ± 0 45 ± 0
LC1 2 2 + LC1 2 7 (32,-32) 6 ± 0 1 ± 0 42 ± 1
LC1 2 4 + LC1 2 7 (-30,0) 40 ± 0 1 ± 0 86 ± 1
LC1 2 4 + LC1 2 8 (-30,0) 45 ± 0 1 ± 0 88 ± 1
LR1 2 10 + LR1 2 3 (0,-30) 41 ± 0 5 ± 0 94 ± 1
LR1 2 10 + LR1 2 8 (0,30) 230 ± 0 1283 ± 449 102 ± 1
LR1 2 3 + LR1 2 8 (0,30) 116 ± 0 111 ± 11 105 ± 1
LR1 2 5 + LR1 2 8 (0,30) 87 ± 0 105 ± 0 102 ± 0
LR1 2 8 + LR1 2 9 (0,-30) 118 ± 0 171 ± 38 94 ± 1
LRC1 2 1 + LRC1 2 9 (-45,0) 19 ± 0 1 ± 0 82 ± 1
LRC1 2 4 + LRC1 2 7 (21,21) 192 ± 0 22 ± 0 89 ± 1
LRC1 2 6 + LRC1 2 7 (-21,-21) 22 ± 0 43 ± 10 82 ± 0
LRC1 2 7 + LRC1 2 8 (21,21) 31 ± 0 1 ± 0 79 ± 1
LRC1 2 7 + LRC1 2 9 (21,21) 26 ± 0 2 ± 0 81 ± 2
Real-World A 37 ± 0 1 ± 0 100 ± 1
Real-World B 16 ± 0 34 ± 0 70 ± 1
Real-World C 12 ± 0 1 ± 0 91 ± 1
Real-World D 23 ± 0 1 ± 0 107 ± 1
Real-World E 9 ± 0 2 ± 0 90 ± 0
Real-World F 25 ± 0 1 ± 0 109 ± 1
Real-World G 44 ± 0 2 ± 0 80 ± 1
Real-World H 33 ± 0 2 ± 0 73 ± 0
Real-World I 14 ± 0 3 ± 0 93 ± 1
Real-World J 16 ± 0 1 ± 0 90 ± 1

in the negotiations. Also, it can be seen that in most cases our approach yields a
fairly uniform Pareto-frontier, with values of γ̂i between 1% and 10%, with only
a few exceptions where this value is higher.

Table 2 displays the average time it took to execute Steps 3 and 4 of our algo-
rithm, as well as the average time for the single-objective search, for comparison.
The time it took to run Steps 1 and 2 was negligible (typically less than 100 ms.),
so they are omitted. All values are averaged over 5 repetitions. The standard errors
of these measurements are also displayed, but in many cases they were so small
that they were rounded off to 0.

Again, one can see very high variance among the test cases, especially for Step
4. Step 3 took between 6 seconds and almost 4 minutes, while Step 4 took, in the
far majority of cases, less than 5 seconds but with some exceptions taking between
1 and 3 minutes, and in one instance even more than 21 minutes. For the single-
objective approach the VRP solver was given a time-budget of 5 minutes, but it
can be seen that in all cases it converged to a near-optimal solution in much less
time. Finally, one can observe that in most cases our heuristic approach finished
faster than the single-objective approach, with a few exceptions.

7.5 Negotiations

As explained above, the idea of our heuristic search algorithm, is that its output
can be used as the input to a negotiation algorithm. Since automated negotiations
have been studied extensively in the literature there is no point in discussing how

30 Dave de Jonge et al.

such algorithms can be implemented here. Instead, the goal of this section is to
show empirically that such algorithms are indeed applicable to our scenario, and
to determine which of them performs best in our scenario.

The experiments in this section were run on the Genius platform [29], which
is arguably the most commonly used platform for experimentation in the field of
automated negotiation. We used some of the best performing agents that were sub-
mitted to the Automated Negotiating Agents Competitions (ANAC) of 2017, 2018
and 2019 [1, 2], which are freely available with Genius. Specifically, the following
agents were used:

– PonPokoAgent Winner of the ‘individual utility’ category of 2017.
– AgentHerb Winner of the ‘social welfare’ category of 2018.
– AgreeableAgent2018 Winner of the ‘individual utility’ category of 2018.
– KakeSoba Second place in the ‘individual utility’ category of 2019.
– SAGA Third place in the ‘individual utility’ category of 2019.
– FSEGA2019 Second place in the ‘social welfare’ category of 2019.

It should be remarked, however, that these agents were developed for negotiation
domains that are slightly different from ours. Firstly, these agents were built under
the assumption that each deal is represented as a tuple of values, and that the
utility function is a linear additive function over these values. Specifically, they
assume there is a set of ‘issues’ I = {I1, I2, . . . In}, where each issue Ij is itself
a finite set and each deal ω is a tuple from the Cartesian product of the issues
ω = (w1, w2, . . . wn) ∈ I1× I2 · · ·× In. The utility function of each agent ai is then
supposed to have the following form:

Ui(w1, w2, . . . wn) =
n∑
j=1

Ui,j(wj) (20)

where each Ui,j is a function Ij → R. Furthermore, the utility function is supposed
to be normalized, so that Ui(ω) ∈ [0, 1] for all possible deals ω.

In Section 4.3 it was explained that our scenario can be seen as a negotiation
domain in which each deal ω is an assignment α, and in which the utility func-
tions are the negations of the cost functions ci(α). However, this model does not
have the normalized and linear additive structure required by the ANAC agents.
Nevertheless, with some modification we can still fit our domain into the required
model, simply by modeling it as a single-issue domain. So, we set I = {I1}, and
I1 = {α1, α2, . . . αK}, where each α is one of the individually rational assignments
returned by our search algorithm. So, the utility function Ui(ω) of Eq. (20) then
becomes:

Ui(α) =
1∑
j=1

Ui,j(α) = Ui,1(α)

and we can define Ui,1 as:

Ui,1(α) =
ui(ϕ)

ui(ϕmax,i)

with ui as in Equation (14), ϕ the full order exchange corresponding to α (through
Equation (15)), and ϕmax,i the full order exchange found by our algorithm with
highest utility for Ci among those that are individually rational. This means that

Multi-Objective Vehicle Routing with Automated Negotiation 31

the utility Ui(α) is always a value between 0 and 1, and the reservation value (i.e.
the utility of the initial assignment) is 0 for each agent (note that we only use
the individually rational assignments, so we ignore those assignments with utility
smaller than zero).3 Recall that ui(ϕ) is an approximation to ci(α)−ci(α), so this
model is still very close to the model discussed in Section 4.3.

A second major difference, is that the ANAC agents do not have any knowl-
edge about their opponents’ utility functions. Therefore, it is not obvious for them
whether a given deal is good or bad. For example, a deal ω that yields a utility
of 0.6 may look good to agent a1, but if the opponent a2 receives a utility of
0.9 for that same deal, and they could have made another deal ω′ that yields 0.8
for both agents, then ω is actually quite unfair to a1. Typically, the agents are
able to infer some information about their opponents’ utility functions from the
offers they make combined with the knowledge that their utility functions have a
linear-additive structure, but in our case there is no such linear-additive structure.
However, as discussed in Section 3.1, in our scenario we can actually make estima-
tion of the opponent’s utility function, so an agent developed specifically for our
scenario might be be able to perform better than the ANAC agents, by using that
knowledge.

To run our experiments, we generated 10 Genius domains, by taking the output
of our algorithm from our 10 real-world test cases, and transforming these results
into Genius’ xml-format4 (although we only used five of them in our experiments).
Then, we used the Genius platform to run a tournament in which each agent
negotiated 15 times against every other agent (including itself) in each of the
first five test cases (labeled A-E), with a deadline of one minute. The results are
displayed in Table 3. The first column shows the names of the agents, the second
column shows in how many negotiation sessions the agents successfully came to an
agreement, the third column shows the average utility obtained by the agents in
those cases where an agreement was made, and the final column shows the average
utility over all negotiation sessions (successful or unsuccessful), which is exactly
the product of columns 2 and 3.

Note that a good negotiator does not necessarily always strike a deal. After all,
in order to enforce a good deal, one should be able to make a credible threat to walk
away from the negotiation table if the opponent is not willing to concede enough.
Therefore, one should strike a balance between taking a hard stance demanding a
good deal for oneself, and, on the other hand, being lenient enough to make a deal
acceptable for the opponent. Indeed, Table 3 shows that the two most extreme
negotiators are also the two worst performing ones. AgreeableAgent2018 takes a
very harsh approach which allows it to obtain maximum utility in those cases that
it strikes a deal, but this approach also leads a high rate of failure, striking a deal
in only 30% of the cases, yielding low overall utility. SAGA, on the other hand,
takes an overly lenient approach which does yield a success rate of 100%, but at
the price that it only receives very low utility for those deals. We see that the
algorithm that performs overall best is FSEGA2019, which takes a more balanced

3 Initially, we also performed some experiments in which we also included all deals that were
not individually rational, but it turned out that some of the agents were not able to handle
such domains well, as they made agreements below their own reservation values.

4 these will be made publicly available at https://www.iiia.csic.es/~davedejonge/
homepage/downloads.

32 Dave de Jonge et al.

Table 3 Results of negotiation experiments with ANAC agents. The second column shows
the number of times each agent came to a deal. The third column shows the average utility
obtained by each agent in case deal was made. The fourth column shows the average utility
over all negotiations, successful or not.

Agent Name Success Utility if Successful Overall Utility
FSEGA2019 40% 0.900 0.360
KakeSoba 33% 0.933 0.311
PonPokoAgent 31% 0.982 0.308
AgentHerb 95% 0.319 0.302
AgreeableAgent2018 30% 1.000 0.300
SAGA 100% 0.093 0.093

approach. We therefore conclude that FSEGA2019 would be the best negotiation
strategy to employ in our setting.

In order to test whether the difference between FSEGA2019 and its opponents
was statistically significant, we performed, for each of its opponents, a Welch t-test.
Indeed, this test showed that FSEGA 2019 outperformed KakeSoba with p-value
0.01, that it outperformed PonPokoAgent with p-value 0.0075, that it outper-
formed AgentHerb with p-value 0.001, that it outperformed AgreeableAgent2018
with p-value 0.002, and that it outperformed SAGA with p-value 2 · 10−48.

7.6 Analysis of Results

This section discusses a number of observations that can be made from the exper-
iments.

Observation 1: There is high variance in the number of solutions
found by our algorithm. This fact is true for all types of test cases. For example,
among the real-world domains there is one instance for which we find 128 solutions,
and one instance for which we find 1302 solutions. Similarly, among the LC1
instances there is one instance with 60 solutions, and one with 449 solutions.
Therefore, it is difficult to say what exactly causes this high variance. We will
leave it as future work to answer this question.

Observation 2: Better results are obtained on the Li & Lim test
cases than on the real-world test cases. This may be partially explained by
the fact that in the real-world test cases most of the orders are picked up at one
of the companies’ depots, while for the Li & Lim test cases the pick-up locations
are typically entirely different from the depots. This greatly reduces the potential
benefit of collaboration in the real-world test cases, because it means a company
needs to drive much farther to pick up another company’s order than to pick up
its own orders. Furthermore, this difference can also be seen when looking at the
solutions found by the single-objective search. This suggests that it is indeed an
artifact of the test cases themselves, rather than our algorithm.

Observation 3: The solutions found by our algorithm are fairly uni-
formly distributed. This is a very nice feature of our algorithm, because it allows
a negotiation algorithm to follow a smooth negotiation strategy that makes very
gradual concessions.

Observation 4: The solution found by the single-objective search is
typically much better than the solutions found by our algorithm (in

Multi-Objective Vehicle Routing with Automated Negotiation 33

terms of social welfare). This is not surprising, given the fact that the single-
objective search can dedicate all computational power towards finding one single
optimal solution, whereas our algorithm aims to find many different solutions.
However, it does show that apparently the socially optimal solution cannot be
found simply by combining one-to-one order exchanges in the way our approach
does. In other words, although our heuristics are efficient, they do tend to miss
certain high-quality solutions.

Observation 5: In most cases our algorithm is faster than the single-
objective search, but with a few exceptions. The comparison between the
run time of the two algorithms should only be seen as a rough ‘ballpark’ estimation.
Note that it does not even make sense to really compare them in detail, firstly
because the two algorithms do different things (our algorithm aims to find the
Pareto-frontier, while the single-objective search aims to find a single optimal
solution), and secondly, because the variance among the problem instances is too
large to draw any general conclusions. Nevertheless, it is important to note that
their respective speeds are of the same order of magnitude, which allows us to
conclude that our approach is a viable alternative to the single-objective approach.

Observation 6: The run time of Steps 1 and 2 are negligible compared
to Steps 3 and 4. The fact that Step 4 takes much more time than Steps 1 and 2
makes sense, given that Steps 1 and 2 have quadratic and linear time complexity
respectively, while Step 4 is exponential. What may seem more surprising, is the
fact that Step 3 often takes more time than Step 4, even though Step 3 only has
quadratic time complexity. However, recall from Section 5.3 that Step 3 involves
solving a vehicle routing problem, and even though this formally only has constant
time complexity (because the VRP instances have bounded size), in practice this
is very costly. It is unlikely that this step can be made any faster, since it depends
on the VRP solver from Google OR-Tools, which is already highly optimized.

Observation 7: The run time of our algorithm displays very high
variance among the various test cases. For any given test case, the variance
in the run times is generally low (with a few exceptions), but between different
test cases we actually see very high variance, both in the run time of Step 3 and
of Step 4. For Step 4 this can be easily explained, because the effectiveness of
And/Or Search highly depends on the structure of the problem. If all variables in
the instance depend on each other, then And/Or search is no more effective than
DFS, while if all variables are completely independent from each other it can solve
the problem in linear time. Therefore, small variations between instances can yield
very large variations in run time.

Furthermore, the effectiveness of And/Or search also heavily depends on the
order in which the variables appear in the tree. To find the optimal variable order-
ing our algorithm uses a non-deterministic heuristic, so this may sometimes yield
less effective orderings.5 This explains why there are a few test cases for which
the variance is actually high. That is, because in those cases the And/Or search
sometimes (but not always) fails to find the optimal variable ordering.

For Step 3 it is much more difficult for us to reason about the origin of the high
variance of its run time, because this is mainly determined by the VRP solver of
Google OR-Tools.

5 The outcome of the algorithm is still perfectly deterministic, though. It is just the run
time that may differ as a consequence of this non-deterministic heuristic.

34 Dave de Jonge et al.

Observation 8: our results are different from (but similar to) the
results published in our previous paper [26]. There are two reasons why the
results are different. The first reason is that we are now taking into account that
it takes time to load or unload a vehicle, which was not taken into account in our
previous paper. This is an extra constraint that makes the problem more difficult,
so we can expect this to have a negative impact on our results. Secondly, a number
of improvements have been made to our algorithm (as mentioned in Section 5.5),
which have had a positive effect on the results. Overall, it seems the positive and
the negative effects roughly cancel out against each other, so the quality of the
solutions is similar. Of course, the single-objective search is only affected by the
increased difficulty of the problem, and indeed for the single-objective search the
results are not as good as those in our previous paper.

Observation 9: The best negotiation algorithm is one that makes a
trade-off between being very hard-headed, and being very conceding.
This is actually well known in the literature on automated negotiation. However,
most research in this area is based on artificial test cases, so it is interesting to
see this fact confirmed on real-world test cases as well. Our experiments indicate
that FSEGA 2019 would be the algorithm that is most applicable to this domain.
Unfortunately, however, we are not aware of any publication that describes this
algorithm, so it is unclear why exactly it outperforms the others.

Furthermore, it is striking to see how poorly the agent named SAGA performs
compared to the others. Again, we are not aware of any publications that describe
it, so we can only guess why. One reason may be that it is not able to handle
single-issue domains. After all, many negotiation algorithms that were developed
for ANAC exploit the fact that the utility functions are linear over the various
‘issues’ of the domain to make better estimations of the opponent’s utility values.
This is not possible, however, in our single-issue test cases.

7.7 Limitations of our Approach

One can identify three main limitations to our approach. The first, is that the
number of solutions, the quality of the solutions, and the run time all display high
variance among the various test cases. This means that it is difficult to predict
how well the algorithm will perform on any unseen problem instances. A second
limitation, is that the solutions found by our algorithm are of lower quality than
the solution found by the single-objective search. This is because our heuristics
sometimes prune the search space too strongly, and therefore discard good solu-
tions. Finally, another main limitation is that there are a number of real-world
constraints that our algorithm is not taking into account. For example, it cur-
rently does not take into account that truck drivers need to take a break once in
a while. Also, it does not take into account that trucks may need to be loaded
and unloaded in a last-in-first-out order, which may restrict the order in which
customers can be visited. Solving these shortcomings is left as future work.

Multi-Objective Vehicle Routing with Automated Negotiation 35

8 Conclusions and Future Work

We have presented a heuristic algorithm for a problem that, to the best of our
knowledge, has never been studied before. Namely, a collaborative VRP without
any form of trusted central system and in which the agents do not know each
others’ cost functions, but are able to estimate them. The goal is, for one agent,
to find a large set of potential exchanges of orders, which can then be used as the
input for a negotiation algorithm. These solutions should ideally be Pareto-optimal
and individually rational.

We have compared our approach with a single-objective approach and conclude
that the two approaches are roughly equally fast. The single-objective approach
returns a solution of higher quality, but has the disadvantage that it only yields one
single solution. Our approach, on the other hand, yields hundreds of alternatives,
which allows the two parties to negotiate about which one they will choose. We
therefore argue that the best approach would actually be a combination of these
two approaches. One could use the single-objective approach to find and propose
a single high-quality solution, and then use our order package approach to find
many alternative solutions that can be proposed in case the high-quality solution
does not get accepted.

One important remark that should be made, is that it was argued in [34] that
horizontal collaboration between logistics companies is typically more effective if
those companies have complementary characteristics. In our test cases, however,
this was not the case. Our two industrial partners are actually very similar, since
they produce similar products, have similar size, and serve similar customers. This
suggests that our algorithm could obtain even better results if it were applied to
a more suitable combination of companies.

As explained above, there are still a number of real-world constraints that our
algorithm does not take into account, such as the necessity for drivers to take
breaks, and the order in which the pallets need to be loaded and unloaded. We
leave it as future work to solve this. Furthermore, we would like to explore the
possibility of applying our approach to ridesharing services such as Uber. After
all, ridesharing can be seen as a kind of co-loading, but with the orders replaced
by humans. Ridesharing has mainly been studied as a single-objective problem
[14], but we think instead it might be useful to view each driver or customer as a
separate agent that tries to optimize its own individual preferences.

As a final note, we would like to argue for what we call the BOASE model for
automated negotiation. In the traditional literature it is argued that negotiation
algorithms typically consist of three components: a Bidding strategy, an Opponent
Modeling strategy, and an Acceptance strategy. This idea is known as the BOA
model [4]. However, we argue that there are two more important components that
are missing from this model, namely Search and Evaluation, which have received
much less attention in the literature. The Evaluation component would be the
algorithm that, given any potential deal ω, calculates its utility value ui(ω) for
agent ai. In the traditional literature one mainly focused on domains with linear
utility functions, so this calculation was trivial, but in our case it amounts to
solving a VRP. The Search component would be the algorithm that determines
which of the potential deals should be evaluated by the Evaluation component.
This is important when the number of such potential proposals in the offer space
is astronomical (as in our case), so one cannot possibly evaluate them all. Search

36 Dave de Jonge et al.

algorithms have received some attention in the automated negotiations literature,
for example in the ANAC 2014 competition [5], but they still remain relatively
little explored.

9 Declarations

Funding This work was supported by project LOGISTAR funded by the E.U.
Horizon 2020 Research and Innovation Programme (Grant Agreement 769142),
by project CI-SUSTAIN funded by the Spanish Ministry of Science and Innova-
tion (PID2019-104156GB-I00), and by a Juan de la Cierva research grant from the
Spanish Ministry of Science and Innovation (IJC2018-036443-I).

Conflicts of interest/Competing interests The authors have no conflicts of
interest to declare that are relevant to the content of this article.

Availability of data and material The Li & Lim Data set that we used for our
experiments is freely available from:
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

On the other hand, the real-world data set is that we used is not available,
since it consists of highly sensitive strategic data from real-world companies.

The Genius negotiation domains that we created from the output of our algo-
rithm can be downloaded from:
https://www.iiia.csic.es/~davedejonge/homepage/downloads

Code availability Our code will not be made publicly available, because we may
use it to build a commercial application.

Authors’ contributions

– Dave de Jonge: Conceptualization, Methodology, Software, Formal analysis,
Investigation, Writing - Original Draft, Visualization.

– Filippo Bistaffa: Conceptualization, Software, Formal analysis, Writing - Re-
view & Editing.

– Jordi Levy: Conceptualization, Formal analysis, Writing - Review & Editing,
Supervision.

References

1. Aydogan R, Fujita K, Baarslag T, Jonker CM, Ito T (2019) ANAC 2018:
Repeated multilateral negotiation league. In: Ohsawa Y, Yada K, Ito T,
Takama Y, Sato-Shimokawara E, Abe A, Mori J, Matsumura N (eds) Ad-
vances in Artificial Intelligence - Selected Papers from the Annual Con-
ference of Japanese Society of Artificial Intelligence (JSAI 2019), Niigata,
Japan, 4-7 June 2019, Springer, Advances in Intelligent Systems and Com-
puting, vol 1128, pp 77–89, DOI 10.1007/978-3-030-39878-1\ 8, URL https:

//doi.org/10.1007/978-3-030-39878-1_8

Multi-Objective Vehicle Routing with Automated Negotiation 37

2. Aydoğan R, Baarslag T, Fujita K, Mell J, Gratch J, de Jonge D, Mohammad
Y, Nakadai S, Morinaga S, Osawa H, Aranha C, Jonker CM (2020) Challenges
and main results of the automated negotiating agents competition (anac) 2019.
In: Bassiliades N, Chalkiadakis G, de Jonge D (eds) Multi-Agent Systems and
Agreement Technologies, Springer International Publishing, Cham, pp 366–
381

3. Baarslag T, Hindriks KV, Jonker CM, Kraus S, Lin R (2012) The first au-
tomated negotiating agents competition (ANAC 2010). In: New Trends in
Agent-Based Complex Automated Negotiations, Studies in Computational In-
telligence, vol 383, Springer, pp 113–135, DOI 10.1007/978-3-642-24696-8\ 7,
URL https://doi.org/10.1007/978-3-642-24696-8_7

4. Baarslag T, Hindriks K, Hendrikx M, Dirkzwager A, Jonker C (2014) De-
coupling negotiating agents to explore the space of negotiation strategies. In:
Marsa-Maestre I, Lopez-Carmona MA, Ito T, Zhang M, Bai Q, Fujita K (eds)
Novel Insights in Agent-based Complex Automated Negotiation, Springer
Japan, Tokyo, pp 61–83, DOI 10.1007/978-4-431-54758-7 4

5. Baarslag T, Aydoğan R, Hindriks KV, Fuijita K, Ito T, Jonker
CM (2015) The automated negotiating agents competition, 2010-2015.
AI Magazine 36(4):115–118, URL http://www.aaai.org/ojs/index.php/

aimagazine/article/view/2609

6. Braekers K, Ramaekers K, Van Nieuwenhuyse I (2016) The vehicle
routing problem: State of the art classification and review. Computers
& Industrial Engineering 99:300–313, DOI https://doi.org/10.1016/j.cie.
2015.12.007, URL https://www.sciencedirect.com/science/article/pii/

S0360835215004775

7. Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a
number of delivery points. Operations research 12(4):568–581

8. Dahl S, Derigs U (2011) Cooperative planning in express carrier networks
— an empirical study on the effectiveness of a real-time decision support sys-
tem. Decision Support Systems 51(3):620 – 626, DOI https://doi.org/10.1016/
j.dss.2011.02.018, URL http://www.sciencedirect.com/science/article/

pii/S0167923611000947

9. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Management
science 6(1):80–91

10. Desrochers M, Lenstra JK, Savelsbergh MW (1990) A classification scheme
for vehicle routing and scheduling problems. European Journal of Operational
Research 46(3):322–332

11. Dixit A, Mishra A, Shukla A (2019) Vehicle routing problem with time win-
dows using meta-heuristic algorithms: A survey. In: Yadav N, Yadav A, Bansal
JC, Deep K, Kim JH (eds) Harmony Search and Nature Inspired Optimization
Algorithms, Springer Singapore, Singapore, pp 539–546

12. Dumas Y, Desrosiers J, Soumis F (1991) The pickup and delivery problem
with time windows. European journal of operational research 54(1):7–22

13. Faratin P, Sierra C, Jennings NR (1998) Negotiation decision functions for
autonomous agents. Robotics and Autonomous Systems 24(3-4):159 – 182,
DOI 10.1016/S0921-8890(98)00029-3, URL http://www.sciencedirect.com/

science/article/pii/S0921889098000293, multi-Agent Rationality
14. Farinelli A, Bicego M, Bistaffa F, Ramchurn SD (2017) A hierarchical clus-

tering approach to large-scale near-optimal coalition formation with qual-

38 Dave de Jonge et al.

ity guarantees. Engineering Applications of Artificial Intelligence 59:170–
185, DOI 10.1016/j.engappai.2016.12.018, URL https://doi.org/10.1016/

j.engappai.2016.12.018

15. Ferrell W, Ellis K, Kaminsky P, Rainwater C (2020) Horizontal collabora-
tion: opportunities for improved logistics planning. International Journal of
Production Research 58(14):4267–4284, DOI 10.1080/00207543.2019.1651457

16. Fujita K, Aydogan R, Baarslag T, Ito T, Jonker CM (2014) The fifth auto-
mated negotiating agents competition (ANAC 2014). In: Recent Advances in
Agent-based Complex Automated Negotiation [revised and extended papers
from the 7th International Workshop on Agent-based Complex Automated
Negotiation, ACAN 2014, Paris, France, May 2014], Springer, Studies in Com-
putational Intelligence, vol 638, pp 211–224, DOI 10.1007/978-3-319-30307-9\
13, URL https://doi.org/10.1007/978-3-319-30307-9_13

17. Fujita K, Aydoğan R, Baarslag T, Hindriks K, Ito T, Jonker C (2017) The
sixth automated negotiating agents competition (anac 2015). In: Modern Ap-
proaches to Agent-based Complex Automated Negotiation, Springer, pp 139–
151

18. Gansterer M, Hartl RF (2018) Collaborative vehicle routing: a survey. Euro-
pean Journal of Operational Research 268(1):1–12

19. Ito T, Klein M, Hattori H (2008) A multi-issue negotiation protocol among
agents with nonlinear utility functions. Multiagent Grid Syst 4:67–83, URL
http://dl.acm.org/citation.cfm?id=1378675.1378678

20. de Jonge D, Sierra C (2012) Automated negotiation for package delivery. In:
Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2012 IEEE
Sixth International Conference on, pp 83–88, DOI 10.1109/SASOW.2012.23

21. de Jonge D, Sierra C (2015) NB3: a multilateral negotiation algorithm for
large, non-linear agreement spaces with limited time. Autonomous Agents and
Multi-Agent Systems 29(5):896–942, DOI 10.1007/s10458-014-9271-3

22. de Jonge D, Sierra C (2016) GANGSTER: an automated negotiator applying
genetic algorithms. In: Fukuta N, Ito T, Zhang M, Fujita K, Robu V (eds)
Recent Advances in Agent-based Complex Automated Negotiation, Studies
in Computational Intelligence, Springer International Publishing, pp 225–234,
URL http://www.iiia.csic.es/~davedejonge/homepage/files/articles/

Gangster.pdf

23. de Jonge D, Sierra C (2017) D-Brane: a diplomacy playing agent for au-
tomated negotiations research. Applied Intelligence 47(1):158–177, DOI
10.1007/s10489-017-0919-y

24. de Jonge D, Zhang D (2020) Strategic negotiations for extensive-form
games. Autonomous Agents and Multi-Agent Systems 34(1), DOI 10.1007/
s10458-019-09424-y, URL https://doi.org/10.1007/s10458-019-09424-y

25. de Jonge D, Baarslag T, Aydoğan R, Jonker C, Fujita K, Ito T (2019) The
challenge of negotiation in the game of diplomacy. In: Lujak M (ed) Agree-
ment Technologies, 6th International Conference, AT 2018, Bergen, Norway,
December 6-7, 2018, Revised Selected Papers, Springer International Pub-
lishing, Cham, Lecture Notes in Computer Science, vol 11327, pp 100–114,
DOI 10.1007/978-3-030-17294-7\ 8

26. de Jonge D, Bistaffa F, Levy J (2021) A heuristic algorithm for multi-agent
vehicle routing with automated negotiation. In: Proceedings of the 20th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AA-

Multi-Objective Vehicle Routing with Automated Negotiation 39

MAS 2021), International Foundation for Autonomous Agents and Multiagent
Systems

27. Jozefowiez N, Semet F, Talbi EG (2008) Multi-objective vehicle routing prob-
lems. European journal of operational research 189(2):293–309

28. Li H, Lim A (2003) A metaheuristic for the pickup and delivery problem
with time windows. International Journal on Artificial Intelligence Tools
12(02):173–186

29. Lin R, Kraus S, Baarslag T, Tykhonov D, Hindriks K, Jonker CM (2014)
Genius: An integrated environment for supporting the design of generic au-
tomated negotiators. Computational Intelligence 30(1):48–70, DOI 10.1111/
j.1467-8640.2012.00463.x, URL http://dx.doi.org/10.1111/j.1467-8640.

2012.00463.x

30. Liu Q, Li X, Liu H, Guo Z (2020) Multi-objective metaheuristics for discrete
optimization problems: A review of the state-of-the-art. Applied Soft Comput-
ing 93:106382, DOI https://doi.org/10.1016/j.asoc.2020.106382, URL https:

//www.sciencedirect.com/science/article/pii/S1568494620303227

31. Marinescu R, Dechter R (2009) AND/OR branch-and-bound search for com-
binatorial optimization in graphical models. Artif Intell 173(16-17):1457–
1491, DOI 10.1016/j.artint.2009.07.003, URL https://doi.org/10.1016/j.

artint.2009.07.003

32. Mell J, Gratch J, Baarslag T, Aydogan R, Jonker CM (2018) Results of the first
annual human-agent league of the automated negotiating agents competition.
In: Proceedings of the 18th International Conference on Intelligent Virtual
Agents, IVA 2018, Sydney, NSW, Australia, November 05-08, 2018, ACM,
pp 23–28, DOI 10.1145/3267851.3267907, URL https://doi.org/10.1145/

3267851.3267907

33. Ombuki BM, Ross B, Hanshar F (2006) Multi-objective genetic algo-
rithms for vehicle routing problem with time windows. Applied Intelli-
gence 24(1):17–30, DOI 10.1007/s10489-006-6926-z, URL https://doi.org/

10.1007/s10489-006-6926-z

34. Palhazi Cuervo D, Vanovermeire C, Sörensen K (2016) Determining col-
laborative profits in coalitions formed by two partners with varying
characteristics. Transportation Research Part C: Emerging Technologies
70:171–184, DOI https://doi.org/10.1016/j.trc.2015.12.011, URL https://

www.sciencedirect.com/science/article/pii/S0968090X15004271

35. Perron L, Furnon V (2019) Google or-tools v7.4. https://developers.

google.com/optimization/

36. van der Putten S, Robu V, La Poutré H, Jorritsma A, Gal M (2006) Au-
tomating supply chain negotiations using autonomous agents: A case study in
transportation logistics. In: Proceedings of the Fifth International Joint Con-
ference on Autonomous Agents and Multiagent Systems, ACM, New York,
NY, USA, AAMAS ’06, pp 1506–1513, DOI 10.1145/1160633.1160926, URL
http://doi.acm.org/10.1145/1160633.1160926

37. Robu V, Noot H, La Poutré H, van Schijndel WJ (2011) A multi-agent
platform for auction-based allocation of loads in transportation logistics.
Expert Syst Appl 38(4):3483–3491, DOI 10.1016/j.eswa.2010.08.136, URL
http://dx.doi.org/10.1016/j.eswa.2010.08.136

38. Rosenschein JS, Zlotkin G (1994) Rules of Encounter. The MIT Press, Cam-
bridge, USA

40 Dave de Jonge et al.

39. Savelsbergh MW, Sol M (1995) The general pickup and delivery problem.
Transportation science 29(1):17–29

40. Toth P, Vigo D (2002) The Vehicle Routing Problem, SIAM monographs
on discrete mathematics and applications, vol 9. SIAM, DOI 10.1137/1.
9780898718515, URL https://doi.org/10.1137/1.9780898718515

41. Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A (2017)
New benchmark instances for the capacitated vehicle routing problem. Euro-
pean Journal of Operational Research 257(3):845–858, DOI https://doi.org/
10.1016/j.ejor.2016.08.012, URL https://www.sciencedirect.com/science/

article/pii/S0377221716306270

42. Wang X, Kopfer H (2014) Collaborative transportation planning of less-than-
truckload freight. OR spectrum 36(2):357–380

43. Wang X, Kopfer H (2015) Rolling horizon planning for a dynamic collabora-
tive routing problem with full-truckload pickup and delivery requests. Flexible
Services and Manufacturing Journal 27(4):509–533

44. Wang X, Kopfer H, Gendreau M (2014) Operational transportation planning
of freight forwarding companies in horizontal coalitions. European Journal of
Operational Research 237(3):1133–1141

